Wertman #1 Oil and Gas Well Site Longmont, Colorado

> July 2, 2018 Terracon Project No. 22177047

Prepared for:

City of Longmont Longmont, Colorado

Prepared by:

Terracon Consultants, Inc. Longmont, Colorado

terracon.com

July 2, 2018

City of Longmont 385 Kimbark Street Longmont, Colorado 80501

Attn: Mr. Jason Elkins

P: (303) 651-8310

E: <u>Jason.Elkins@longmontcolorado.gov</u>

Re: Limited Soil, Groundwater, and Soil Gas Investigation Report

Wertman #1 Oil and Gas Well Site

Longmont, Colorado

Terracon Project No. 22177047

Dear Mr. Elkins:

Terracon Consultants, Inc. (Terracon) is pleased to submit our report of Limited Soil, Groundwater, and Soil Gas Investigation activities completed at the site referenced above. Terracon conducted the Investigation in general accordance with our proposal (P22177047), dated November 29, 2017.

Terracon appreciates this opportunity to provide environmental consulting services to The City of Longmont. Should you have any questions or require additional information, please do not hesitate to contact our office.

Sincerely,

Terracon Consultants, Inc.

Michael J. Skridulis
Environmental Department Manager

John C. Graves, P.G. Regional Manager/Senior Principal

TABLE OF CONTENTS

			Page No.
EXEC	UTIVE	SUMMARY	i
1.0	SITE	DESCRIPTION	1
2.0	SCO	PE OF SERVICES	1
	2.1 2.2 2.3 2.4	Background Evaluation	2 2
3.0	FIELD	D INVESTIGATION	3
	3.1 3.2 3.3	Safety and Subsurface Utilities Sampling and Analytical Program Summary Field Procedures 3.3.1 Soil Boring Advancement 3.3.2 Groundwater Monitoring Well Installation 3.3.3 Soil Vapor Point Installation	3 4 4
4.0	FIELD	D INVESTIGATION RESULTS	6
	4.1 4.2	Geology/HydrogeologyField Screening	
5.0	ANAL	LYTICAL RESULTS	6
	5.1 5.2 5.3	Soil Sample Results	7
APPE		A – EXHIBITS	
		oit 1 – Topographic Map	
		oit 2 – Site Diagram oit 3 – Groundwater Contour Map	

APPENDIX B – TABLES

Table 1 – Soil Analytical Summary

Table 2 – Groundwater Analytical Summary

Table 3 – Soil Gas Analytical Summary

Table 4 – Receptor Worksheet

APPENDIX C - SOIL BORING LOGS

APPENDIX D - ANALYTICAL REPORTS AND CHAINS OF CUSTODY

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

i

EXECUTIVE SUMMARY

This Limited Soil and Soil Gas Investigation was performed in accordance with the scope of services outlined in Terracon Proposal No. P22177047, dated November 29, 2017. A total of four soil borings (SB-01 through SB-04), which were converted to groundwater monitoring wells (MW-01 through MW-04), and three soil vapor points (SVP-01 through SVP-03) were installed at the site to evaluate potential petroleum impacted soil, groundwater, and soil gas based on historical oil and gas (O&G) extraction operations at the site. Soil, groundwater, and soil vapor samples were collected and analyzed in accordance with the procedures outlined in Section 3 of this report.

A summary of our findings, conclusions, and recommendations is provided below. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein.

Findings

The lithology encountered at the site consists of silty sand and sandy clay from approximately 0 to 11 feet below ground surface (bgs), underlain by poorly graded sand and gravel to boring termination. The depth to groundwater ranged from 11 to 12 feet bgs observed during drilling activities.

Volatile organic compounds (VOCs) were not reported at concentrations above United States Environmental Protection Agency (EPA) Residential or Industrial Regional Screening Levels (RSLs) for soil or groundwater samples collected during this investigation.

Inorganic constituents were reported at concentrations above laboratory detection limits for all groundwater samples. Chloride was reported above Colorado Oil and Gas Conservation Commission (COGCC) regulatory action levels (1.25x the background levels of chloride) in all water samples (MW-01, MW-02, MW-03, MW-04). Sulfate was reported above Colorado Department of Health and Environment (CDPHE) groundwater standards in all water samples (MW-01, MW-02, MW-03, MW-04).

VOC constituents detected in the soil gas samples were compared to the 2016 CDPHE Indoor Air Screening Concentrations (ASC) – Residential and Worker Remediation Goals, and the June 2017 USEPA Residential and Industrial Indoor Air RSLs, after applying a 3% attenuation factor for subslab soil gas per the EPA Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Gas Intrusion Pathway from Subsurface Gas Sources to Indoor Air (OSWER Guidance, June 2015). Reference to the OSWER guidance is not meant to imply that the scope of this soil gas investigation was designed to include the guidance's subsurface characterization criteria or that Terracon conducted a detailed vapor intrusion risk assessment. Reported concentrations are also summarized in Table 2 of Appendix A and the laboratory report is provided in Appendix D of this report.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

A number of VOCs were reported in the soil gas sample collected from SVP-03 above residential RSLs including benzene, bromomethane, carbon disulfide, and ethylbenzene. After applying the 3% attenuation factor no VOCs were reported in soil gas at concentrations exceeding EPA residential RSLs. Methane was not reported in any of the soil gas samples collected as part of this investigation above its respective laboratory detection limit.

Conclusions

Benzene, bromomethane, carbon disulfide, and ethylbenzene were detected in SVP-03, but are not a considered a vapor intrusion concern for residential property. Although inorganics were detected above their respective regulatory values in site groundwater samples, based on the site history near former farming operations and the lack of other indicator chemicals of concern indicative of produced water spills, it is inconclusive whether historical O&G operations had any impact to the site groundwater. Based on the continued use of the site as a newly developed subdivision with city provided utilities and current depth to groundwater measurements, the groundwater at the site is not considered an environmental risk to residential property.

Recommendations

The objective of the investigation was to evaluate the presence of constituents of concern in the on-site soil, groundwater, and soil gas above relevant laboratory detection limits and/or regulatory limits associated with historical O&G operations at the site.

Based on the scope of services, limitations, and conclusions of this assessment, additional investigation does not appear warranted at this time. However, Terracon will resume the completion of the original scope of services to install one additional soil boring/monitoring well at the site once development operations allow access.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

1.0 SITE DESCRIPTION

Site Name	Wertman #1 O&G Well Site
Site Location	1239 Hummingbird Circle, Longmont, Colorado

A Topographic Map showing the site location is included as Exhibit 1 and a Site Diagram is included as Exhibit 2 in Appendix A.

2.0 SCOPE OF SERVICES

In 2012, Terracon was retained by the City of Longmont (COL) to assess seventeen plugged and abandoned (PA) oil and gas (O&G) wells located within the City of Longmont limits. The objective of the 2012 assessment was to provide information concerning the plugging and abandoning of 17 O&G wellheads located within the City of Longmont and to assess the potential presence of surficial soil impacts, methane and other gasses in the subsurface near the surveyed well locations.

On May 2, 2017, the COGCC issued a statewide Notice to Operators (NTO) directing operators to inspect their inventory of existing flowlines and verify that any existing flowline not in active use, regardless of when it was installed or taken out of service, is abandoned pursuant to COGCC Rule 1103. Terracon understands that the City of Longmont would like to expand the scope of work from the 2012 project to include assessing the condition of soil, groundwater, and soil gas at select locations.

The objective of the environmental services was to provide information concerning the Wertman #1 PA O&G well located within the City of Longmont and to assess the potential presence of surficial/subsurface soil and groundwater impacts and presence of methane and other gasses in the subsurface near the reported well location.

2.1 Background Evaluation

As outlined in Terracon's Research Summary Report, dated February 6, 2013, Drilling of the Wertman #1 well (API Number 05-013-06195) started on January 8, 1985, and the well was drilled to 6,612 feet below ground surface (bgs). Surface casing was set at 522 feet bgs.

Plugging and abandonment started in October 1994. A bridge plug with a cement cap was placed above the perforations. The cap is intended to isolate the perforations and prevent flow up the casing from the formation. The production casing was cut and the loose pipe recovered. There was no record found that cement plugs were placed at the stub or in the open borehole section

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

above the cut to prevent flow of fluids up the casing annulus from reaching the surface. Cement plugs were placed across the surface casing shoe and at the surface, which is intended to prevent fluids moving to the surface.

The water well search findings indicate one temporary groundwater monitoring well (within 1,000 feet of the wellsite) was drilled, installed and abandoned within one year. The well was abandoned by removing a 1 inch diameter PVC casing and plugging from 0.3 to 13 feet bgs with granular bentonite and from 0 to 0.3 feet bgs with cement.

The land use of the wellsite during drilling and plugging activities was agricultural. The aerial photograph taken on March 26, 1986 has an access road with a turn around, wellhead equipment, tanks and supporting equipment visible within an agricultural field.

The current land use is a vacant parcel zoned as residential, based on the May 4, 2011 aerial photograph and City of Longmont zoning map. The location of the former production equipment may be within developed residential parcels. The wellsite is located in the Blue Vista Subdivision and is zoned by the City of Longmont as Residential Planned Unit Development.

A summary of sensitive receptors are outlined in the attached Table 4 in Appendix B.

2.2 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time. Terracon makes no warranties, express or implied, regarding the findings, conclusions, or recommendations. Terracon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report. These Investigation services were performed in accordance with the scope of work agreed with you, our client, as reflected in our proposal and were not intended to be in strict conformance with ASTM E1903-11.

2.3 Additional Scope Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable, or not present during these services. We cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this Investigation. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations, or exploratory services. The data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

2.4 Reliance

This report has been prepared for the exclusive use of the City of Longmont, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the express written authorization of the City of Longmont and Terracon. Any unauthorized distribution or reuse is at the City of Longmont's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions, and limitations stated in the proposal, Investigation report, and Terracon's Master Services Agreement (MSA) with the City of Longmont. The limitation of liability defined in the terms and conditions of the MSA is the aggregate limit of Terracon's liability to the City of Longmont and all relying parties unless otherwise agreed in writing.

3.0 FIELD INVESTIGATION

3.1 Safety and Subsurface Utilities

Terracon is committed to the safety of all its employees. As such, and in accordance with our Incident and Injury Free® safety goals, Terracon conducted the fieldwork under a site-specific health and safety plan. The plan identified site-specific job hazards and proper pre-task planning procedures. Work was performed using Occupational Safety & Health Administration (OSHA) Level D work attire consisting of hard hats, high-visibility attire, safety glasses, protective gloves, and protective boots. Terracon contacted Colorado 811 and requested location and markings for subsurface utilities that the service was responsible for before commencing intrusive activities at the site.

3.2 Sampling and Analytical Program Summary

On May 2, 2018, a total of four soil borings (SB-01 through SB-04), which were converted to groundwater monitoring wells (MW-01 through MW-04), and three soil vapor points (SVP-01 through SVP-03) were installed at the site. The sample locations were selected to generally represent the area with the highest potential for detecting constituents of concern based on the historical locations of equipment used in previous oil and gas production at the site and locations to confirm the completion of former remedial activities. Refer to the attached Site Diagram (Exhibit 2, Appendix A) for a depiction of the sample locations and pertinent site features. The sampling and analytical program is outlined below.

The proposed scope of work included the advancement of one additional soil boring to be converted into a monitoring well. Due to ongoing construction activities, Terracon was unable to perform this work at this time. Once construction and grading activities allow, Terracon will remobilize to the site to complete the scope of services. Information pertaining to the additional scope will be included as an addendum to this report.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

SAMPLING AND ANALYTICAL PROGRAM								
Area of Concern	Wertman #1 O&G Well Site							
Soil Borings	SB-01 through SB-04							
(Total Depth)	(16 feet)							
Groundwater	MW-01 through MW-04							
Groundwater	(15 feet)							
Soil Vapor Points	SVP-01 through SVP-03							
Sail Analysis	VOCs/TPH-GRO – EPA 8260							
Soil Analysis	TPH-DRO/ORO – EPA 8015							
	VOCs – EPA 8260							
	Dissolved Gasses – RSK 175							
Croundwater Analysis	Major Cations, Dissolved – EPA 6010B							
Groundwater Analysis	Nitrite, Nitrate, Bromide, Chloride, Sulfate – EPA 300.0							
	Alkalinity – SM 2320B							
	Strontium – EPA 6020							
Sail Gas Analysis	VOCs – EPA TO-15							
Soil Gas Analysis	Methane – EPA D1946							

EPA = Environmental Protection Agency; SW-846 analytical methods

VOCs = volatile organic compounds

TPH = total petroleum hydrocarbons

G/D/ORO = gasoline, diesel, and oil range organics

3.3 Field Procedures

3.3.1 Soil Boring Advancement

Drilling services were performed using a direct-push technology (DPT) Geoprobe[®] drilling rig. Oversight of the drilling activities was conducted by a Terracon field professional. Soil samples were collected using 4-foot direct-push sampling tubes lined with dedicated PVC liners. Drilling equipment was cleaned using a high-pressure washer prior to beginning the project. Non-dedicated sampling equipment was cleaned using an Alconox[®] wash and potable water rinse prior to the beginning of the project and before collecting each soil sample.

Soil samples were collected continuously and observed to document soil lithology, color, moisture content and sensory evidence of impairment. The soil samples were field-screened at 4-foot intervals using a photoionization detector (PID) equipped with a 10.6 electron volt ultraviolet lamp source to qualitatively evaluate the potential volatile organic vapors to indicate the presence of VOCs. Terracon calibrated the PID in accordance with the manufacturer's recommendations before the field activities. The boring logs attached in Appendix C include the lithology and field screening results for each soil boring completed as part of this investigation.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

Terracon's soil sampling program involved assigning one soil sample from each soil boring for laboratory analysis. The soil sample selected for laboratory analysis was collected from the interval exhibiting the highest PID reading and/or highest likelihood of a release based on the field professional's judgment. The soil samples were collected using Terracon standard operating procedures (SOPs) and field methods. Soil sample intervals for each boring are presented on the soil boring logs included in Appendix C.

3.3.2 Groundwater Monitoring Well Installation

After soil borings were completed to depth and soil samples were collected, the soil borings were completed as groundwater monitoring wells. The wells were constructed to approximately 15 feet bgs using 2.0-inch diameter polyvinyl chloride (PVC) with 10 feet of factory slotted well screen and 5 feet of blank PVC casing to surface. A silica sand filter pack was placed around the well screen to approximately one foot above the top of well screen, followed by a hydrated bentonite seal, and approximately 0.5 feet of sand to the surface. The monitoring wells were fitted with J-plug well caps and bolt-down, flush-mounted well covers set in concrete. The well construction details are provided on the soil boring logs presented in Appendix C.

On May 15, 2018, Terracon personnel visited the site to collect static groundwater levels, develop the monitoring wells, and collect groundwater samples for laboratory analysis. Depth to groundwater ranged from 9.8 feet below top of monitoring well casing (TOC) in MW-01 to 10.65 feet below TOC in MW-02. Monitoring wells were developed by repeatedly surging the wells with a 2-inch diameter PVC surge block and purging the groundwater from the wells with a single-use PVC bailer in accordance with the Terracon SOP 10 – *Monitor Well Development*. Monitoring wells MW-01 through MW-04 were sampled after development and after they were allowed to recharge for a short time.

The TOCs were surveyed in accordance with Terracon SOP *E.1800 Physical Field Measurements*. For this project, Terracon used a level, tripod and rod to establish the relative elevation of ground surface and TOC at each monitoring well constructed onsite.

3.3.3 Soil Vapor Point Installation

Three SVPs (SVP-01 through SVP-03) were installed on May 2, 2018. SVP-01 through SVP-03 were installed in the vicinity of the former O&G well head and downgradient location of former remedial activities for collection of soil gas samples for laboratory analysis. The soil gas points, consisting of 8.0-inch long stainless steel screened points and Teflon tubing, were placed into each boring at an approximate depth of 5 feet bgs and backfilled with silica sand to approximately 6 inches above the top of the screen, followed by hydrated bentonite to near surface. Locations are depicted on Exhibit 2 in Appendix A.

Sampling of the soil gas points was performed by an Environmental Professional on May 15, 2018 (SVP-01 through SVP-03), allowing the soil gas points time to equilibrate. Soil gas sampling was

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

conducted within a polyethylene shroud placed over the sample point. Extracted soil gas was screened in the field utilizing a Multi-Rae multi-gas meter, which was calibrated prior to use in accordance with the manufacturer's specifications. The Multi-Rae was used to assess potential explosive gas (methane) and VOCs. Sample tubing was connected to the sampling point and routed to the exterior of the shroud. Leak detection was conducted by introducing helium tracer gas into the sampling shroud through a separate port prior to sampling and using a portable helium gas detector to monitor for potential leaks in the sampling train. A peristaltic pump was utilized to purge the sample train tubing prior to collecting the laboratory sample within laboratory supplied 1-liter summa canisters.

After purging the sampling point of approximately three sampling train volumes and observing that there were no detected leaks, a laboratory-supplied 1-liter summa canister was filled with soil gas for laboratory analysis. The canister was connected to the sampling point using dedicated nylon sample tubing and was equipped with a laboratory-supplied flow regulator allowing for sample collection at a low-flow rate (i.e. <200 milliliters per minute [ml/min]).

Upon completion of sample collection, the summa canister valve was closed, secured, and appropriately labeled with pertinent sample information. Canister pressures were recorded prior to and after sample collection. The sample canisters were placed into a shipping container and transported under chain-of-custody to ESC Lab Sciences (ESC) located in Mt. Juliet, Tennessee for analysis.

4.0 FIELD INVESTIGATION RESULTS

4.1 Geology/Hydrogeology

The boring logs contained in Appendix C detail the observed soil stratigraphy. In general, Terracon encountered silty sand and sandy clay from approximately 0 to 11 feet bgs, underlain by poorly graded sand and gravel to boring termination at approximately 15 feet bgs. The depth to groundwater ranged from 11 to 12 feet bgs observed during drilling activities.

4.2 Field Screening

The field screening results are summarized on the boring logs contained in Appendix C. PID readings were not observed above 1 part per million (ppm) in any of the soil samples collected from the soil borings as part of this investigation.

5.0 ANALYTICAL RESULTS

The laboratory analytical reports and chain-of-custody records are attached in Appendix D. The following sections describe the results of the analytical testing performed as part of this limited

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

site investigation. The constituents of concern concentrations were compared to the May 2016, USEPA, Residential and Industrial RSLs, and January 2015 COGCC Table 910-1 (Concentration Levels) for soil. Groundwater analytical results were compared to June 30, 2016 CDPHE Groundwater Quality Standards (GWQSs) and January 2015 COGCC Table 910-1 Groundwater Concentration Levels (910-1 Levels). CDPHE January 2016 Residential and Industrial Air Screening Concentrations (ASCs) and the June 2017 USEPA Residential and Industrial Indoor Air RSLs, after applying a 3% attenuation factor for subslab soil gas per the USEPA OSWER Technical Guide for Assessing and Mitigating the Gas Intrusion Pathway from Subsurface Gas Sources to Indoor Air (OSWER Guidance, June 2015) were used for soil gas comparison.

5.1 Soil Sample Results

The soil analytical data and corresponding action levels are summarized in Table 1 (Appendix B).

VOCs were not reported at concentrations above laboratory detection limits for soil samples SB-01 and SB-02. 2-butanone (MEK) was reported above laboratory detection limits in soil samples SB-03 (0.0307 milligrams per kilogram [mg/kg]) and SB-04 (0.0289 mg/kg), but both values are below residential and industrial RSLs. Tetrachloroethene (PCE) was reported above laboratory detection limits but below residential and industrial RSLs in soil sample SB-03 (0.00295 mg/kg).

5.2 Groundwater Sample Results

The groundwater analytical data and corresponding action levels are summarized in Table 2 (Appendix B).

Acetone was reported at a concentration above its laboratory detection limit in the groundwater sample collected from monitoring well MW-01 at a concentration of 128 micrograms per liter (μ g/L). The reported concentrations did not exceed its regulatory action levels for groundwater of 6,300 μ g/L. VOC constituents were not reported above their respective laboratory detection limits for any of the other groundwater samples submitted for laboratory analysis during this investigation.

Inorganic cations and anions can be secondary indicators of well site releases associated with produced water. Neither CDPHE nor the COGCC have developed groundwater standards for the following indicator parameters: dissolved calcium, dissolved magnesium, dissolved potassium, dissolved sodium, strontium, alkalinity species, or bromide.

The COGCC has defined the groundwater standard exceedance concentrations for chloride and sulfate to be a regional background concentration with a multiplier of 1.25. Terracon utilized 2017 analytical data for chloride and sulfate from the sites sampled during the City of Longmont 2017 Annual Groundwater Quality Monitoring sampling event (Terracon Project No. 22177002) to calculate respective regional background concentrations.

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

Terracon used the USEPA's statistical software (ProUCL), Version 5.1, to determine if the dataset used to calculate the mean was statistically normal. The ProUCL software can be downloaded at https://www.epa.gov/land-research/proucl-software. After eliminating monitoring well analytical data that was not representative of normal conditions, the data was inputted into ProUCL. Analysis was conducted to evaluate if there are additional outlying data points and if the data set adhered to a normal distribution. Several sulfate analytical results were removed from the data set based on the results of the initial outlier test. The outlier test does state that there is a potential outlier. However, based on a 1% and 5% significance level, there were no potential outliers; therefore no additional analytical results were removed from the data set. A normal Q-Q plot was then generated to evaluate if the data set for chloride and sulfate adhered to a normal distribution. The normal Q-Q plot illustrates that both data sets are normal. The mean and standard deviation were also calculated using ProUCL.

The COGCC cleanup goal was calculated by multiplying the mean (from background well data) times 1.25 per Table 910-1 from the COGCC rules. A summary of pertinent statistical results and the calculated COGCC cleanup levels for chloride and sulfate are listed below in micrograms per liter (µg/L):

Statistical Analysis	Chloride (μg/L)	Sulfate (µg/L)
Mean (from background well data)	41,730	665,900
COGCC cleanup goal (1.25 x background)	52,160	832,400
Standard Deviation	6,240	148,600
Sample Size	44	21

The sulfate concentration reported in groundwater samples collected from monitoring wells MW-01 (529,000 μ g/L), MW-02 (492,000 μ g/L), MW-03 (509,000 μ g/L), and MW-04 (449,000 μ g/L) all exceeded the CGWQS of 250,000 μ g/L, but were below the calculated COGCC statistical regional background concentration standard of 832,400 μ g/L.

The chloride concentration reported in groundwater samples collected from monitoring wells MW-01 (97,200 μ g/L), MW-02 (83,800 μ g/L), MW-03 (96,400 μ g/L), and MW-04 (86,500 μ g/L) were all below the CGWQS of 250,000 μ g/L, but above the calculated COGCC statistical regional background concentration standard of 52,160 μ g/L.

Specific conductance was reported in the groundwater samples ranging from 1,437 to 1,873 micro Siemens per centimeter (µmhos/cm). Generally, relatively higher concentrations of specific conductance were reported in groundwater samples with higher concentrations of alkalinity, bromide, chloride, nitrate, nitrite, sulfate and sulfide. Higher concentrations of specific conductance generally correspond to more turbid samples which have more sediment and

Wertman #1 O&G Well Site Longmont, Colorado July 2, 2018 Terracon Project No. 22177047

subsequently more inorganics from the sediment. This occurs when monitoring wells do not recharge sufficiently during purging and the formation contains silts and clays.

Groundwater samples were reported to have a neutral pH (i.e. near 7.0), and within the CDPHE basic standard for groundwater range of 6.5 to 8.5; pH values in the monitoring wells measured during purging were reported in a range from 7.36 to 7.8.

Dissolved methane was reported in the groundwater sample collected from monitoring well MW-01 at a concentration of 10.1 μ g/L. Although there is currently no regulatory limit established for dissolved methane in groundwater, based on general accepted environmental practices, 10,000 to 28,000 μ g/L of dissolved methane in groundwater has been generally accepted as a threshold limit to warrant additional investigation. Concentrations of methane less than 10,000 μ g/L are not considered an environmental risk, but should be monitored to observe if concentrations increase over time.

5.3 Soil Gas Sample Results

VOC constituents reported in the soil gas samples were compared to the 2016 CDPHE Indoor Air Screening Concentrations (ASC) – Residential and Worker Remediation Goals, and the June 2017 USEPA Residential and Industrial Indoor Air RSLs, after applying a 3% attenuation factor for subslab soil gas per the USEPA OSWER Technical Guide for Assessing and Mitigating the Gas Intrusion Pathway from Subsurface Gas Sources to Indoor Air (OSWER Guidance, June 2015). Reference to the OSWER guidance is not meant to imply that the scope of this soil gas investigation was designed to include the guidance's subsurface characterization criteria or that Terracon conducted a detailed vapor intrusion risk assessment. A summary of the analytical results is provided below. The soil gas analytical data reported above laboratory detection limits and corresponding action levels are summarized in Table 3 (Appendix B).

A number of VOCs were reported across the site above Residential RSLs including benzene bromomethane, carbon disulfide, and ethylbenzene. After applying the 3% attenuation factor, none of the VOCs in soil gas were reported at reported concentrations that represent a vapor intrusion concern for residential property use.

Methane was not detected in any of the soil gas samples collected as part of this investigation above its respective laboratory detection limit.

APPENDIX A - EXHIBITS

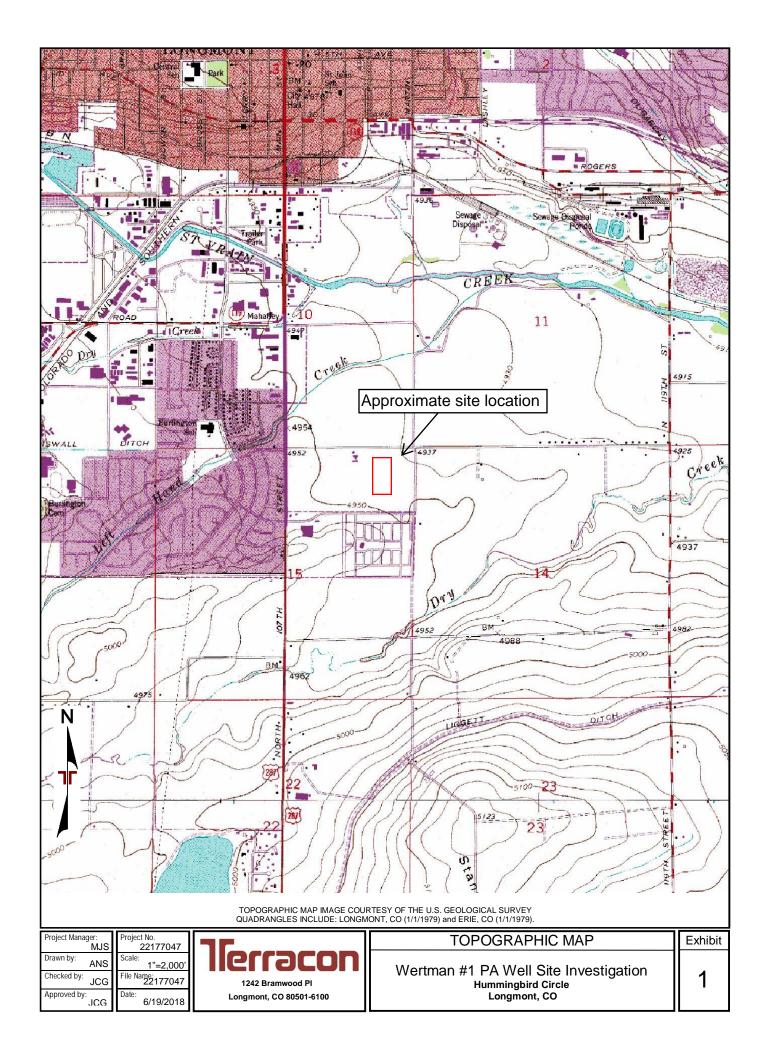
Exhibit 1 – Topographic Map Exhibit 2 – Site Diagram Exhibit 3 – Groundwater Contour Map

APPENDIX B - TABLES

Table 1 – Soil Analytical Summary

Table 2 – Groundwater Analytical Summary

Table 3 – Soil Gas Analytical Summary


Table – Receptor Worksheet

APPENDIX C - SOIL BORING LOGS

APPENDIX D – ANALYTICAL REPORTS AND CHAINS OF CUSTODY

APPENDIX A - EXHIBITS

Exhibit 1 – Topographic Map Exhibit 2 – Site Diagram Exhibit 3 – Groundwater Contour Map

Project Manager: MJS
Drawn by: ANS
Checked by: JCG
Approved by: JCG
Drawn by: JCG
Approved by: JCG
Approved

Wertman #1 PA Well Site Investigation
Hummingbird Circle
Longmont, CO

SITE DIAGRAM

Exhibit

2

Drawn by: Checked by: JCG Approved by: JCG

AS SHOWN File Name: 22177047 6/19/2018

Wertman #1 PA Well Site Investigation
Hummingbird Circle Longmont, CO

3

APPENDIX B - TABLES

Table 1 – Soil Analytical Summary

Table 2 – Groundwater Analytical Summary

Table 3 – Soil Gas Analytical Summary

Table – Receptor Worksheet

Table 1 Summary of Soil Analytical Results Wertman #1 O&G Well Site Longmont, Colorado Terracon Project No. 22177047

Sample ID and Depth			SB-01	SB-02	SB-03	SB-04		
Collection Date					4/11/18	4/11/18	4/11/18	4/11/18
Parameter Residential RSL Industrial			COGCC Concentration Levels	CDPHE GPV	mg/kg	mg/kg	mg/kg	mg/kg
VOC (8260B)								
2-Butanone (MEK) 27,000 190,000			NE	18	< 0.025	< 0.025	0.0307	0.0289
Tetrachloroethene	NE	1.9	< 0.001	< 0.001	0.00295	<0.001		

¹⁾ The CDPHE Background concentration is 11 mg/kg, per the Risk Management Guidance for Evaluating Arsenic Concentrations in Soil, reviewed/revised July 2014.

Only detected analytes shown (detected concentrations are **bold**)

RSL = EPA Regional Screening Level (May 2016)

CDPHE GPV = Colorado Department of Public Health and Environmental Groundwater Protection Value (March 2014)

NE = Not Established

TPH = Total Petroleum Hydrocarbons

VOC = Volatile Organic Compounds

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

COGCC = Colorado Oil and Gas Conservation Comission

COGCC Concentration Levels = COGCC Table 910-1 (January 2015)

Page 1 of 1
Wertman #1 Tables: Table X Soil results

Table 2 Groundwater Analytical Summary Wertman #1 O&G Well Site Longmont, Colorado Terracon Project No. 22177047

Sample ID MW-01 MW-02 MW-03										
Sample ID			IVI VV -U I	IVI VV -UZ	10100-03	MW-04				
Collect Date										
Parameter	CDPHE Reg. 41 Groundwater Standard ¹	COGCC Concentration Levels ²	μg/L	μg/L	μg/L	μg/L				
VOC (8260B)			5/15/2018	5/15/2018	5/15/2018	5/15/2018				
Acetone	6,300	NE	128	<50	<50	<50				
Other Organics										
Methane	NE	NE	10.1	<10	<10	<10				
Ethane	NE	NE	<13	<13	<13	<13				
Ethene	NE	NE	<13	<13	<13	<13				
Inorganic Parameters										
Calcium, Total	NE	NE	270,000	161,000	304,000	156,000				
Iron, Total	NE	NE	222,000	42,700	615,000	80,400				
Magnesium, Total	NE	NE	159,000	119,000	242,000	136,000				
Potassium, Total	NE	NE	39,800	11,900	90,300	12,600				
Sodium, Total	NE	NE	134,000	134,000 136,000 12		116,000				
Strontium	NE	NE	4,220	3,020	5,530	3,420				
Alkalinity, Total as CaCO3	NE	NE	401,000	423,000	409,000	418,000				
Bromide	NE	NE	<1000	<1000	<1000	<1000				
Chloride	250,000	52,160*	97,200	83,800	96,400	86,500				
Nitrogen as Nitrate	10,000	NE	3,920	4,110	5,460	4,220				
Nitrogen as Nitrite	1,000	NE	218	<100	<100	<100				
Sulfate	250,000	832,400*	529,000	492,000	509,000	449,000				
General Parameters										
Specific Conductance (mmhos)	NE	NE	1,873	1,437	1,667	1,627				
Temperature (°C)	NE	NE	13.62	12.97	13.1	13				
Dissolved Oxygen (mg/L)	NE	NE	3.37	4.3	4.13	5.1				
ORP	NE	NE	-67.8	-5.7	43.5	85.75				
рН	6.5-8.5	NE	7.8	7.58	7.36	7.71				

¹⁾ CDPHE GW Quality Standards - Regulation 41 Table A, Ground Water Organic Chemical Standards (June 30, 2016)

Only detected analytes shown (detected concentrations are **bold**)

NE = Not Established

VOC = Volatile Organic Compounds

NA = Not Analyzed

COGCC = Colorado Oil and Gas Conservation Comission

M = Drinking Water Maximum Contaminant Level

Page 1 of 1
Wertman #1 Tables: Table 1 GW Data Summary
6/25/2018

²⁾ COGCC Concentration Levels = COGCC Table 910-1 (January 2015)

^{*)} The COGCC cleanup standard for chloride and sulfate is 1.25 x background. Background concentrations from unimpacted wells were used to average and calculate an appropriate background concentration for this area.

Table 3 Soil Gas Analytical Summary Wertmen #1 O&G Well Site Longmont, Colorado Terracon Project No. 22177047

Sample ID			SVP-01	SVP-02	SVP-03
Collect Date			5/15/2018	5/15/2018	5/15/2018
Parameter	Residential RSL	ua/m ³			μg/m³
VOC (TO-15)					
Acetone	32,000	1,066,667	8.37	14.1	10.6
Benzene	0.36	12	<1.28	<1.28	3.3
Bromomethane	0.52	17	<1.55	<1.55	9.54
Carbon disulfide	73	2,433	4.49	<1.24	140
Chloromethane	94	3,133	<0.826	1.29	4.73
Cyclohexane	630	21,000	<1.38	<1.38	16.3
Ethanol	NE	NE	7.98	9.6	9.69
Ethylbenzene	1.1	37	<1.72	<1.72	4.33
Dichlorodifluoromethane	100	3,333	2.07	2.13	<3.40
Heptane	NE	NE	<1.64	<1.64	5.99
n-Hexane	730	24,333	<1.41	2.77	7.95
Methylene Chloride	100	3,333	2.15	5.46	4.1
Propene	3,100	103,333	<1.38	<1.38	54.8
Toluene	5,200	173,333	2.36	1.62	9.4
1,2,4-Trimethylbenzene	7.3	243	<1.26	<1.26	2.88
2,2,4-Trimethylpentane	NE	NE	<1.87	<1.87	3.09
o-Xylene	100	3,333	<1.73	<1.73	4.44
Methane by D1946 (%)					
Methane	NE	NE	<0.4	<0.4	<0.4

¹⁾ VISL - Vapor Intrusion Screening Level (calculated by dividing the RSL for residential indoor air by the State approved 3% [0.03] attenuation factor).

RSL = USEPA Indoor Air Regional Screening Level (HQ=0.1 June 2017)

ASC = CDPHE Air Screening Concentrations, Remediation Goals (January 2016)

ND = Not Detected

NE = Not Established

NA = Not Applicable

Only detected analytes shown (detected concentrations are **bold**)

Table 3 - Receptor Worksheet George Mayeda #1 Oil and Gas Well

Lease:	Wertman					
Well Number:	#1					
API Number:	05-013-06097					
Operator	Operator Meyer Oil Company					
Sensitive Recept	or Detail					
Receptor		Distance	Gradient ²	Direction	Type of Receptor	Comments
Surface Water Bo	Surface Water Body: 1,250 fee		Cross-Gradient	Northwest	Pond	Unnamed
Surface Water Bo	Surface Water Body: 2,000		Cross-Gradient	North	Creek	Left Hand Creek
Structure: 100 feet			up-Gradient	West	Residential	Residential Townhomes

Residential

Temparary well (36 feet)

Electrical

Sewer

Residential Townhomes

Electrical along Cardinal Way

Sewer Manhole on Hummingbird Circle

Well 8318 registered to Sisters of St. Fran

1,000 feet Down-Gradient

Cross-Gradient

Cross-Gradient

Cross-Gradient

100 feet

130 feet

70 feet

Structure:

Buried Utilities:

Sewer/Water

Water Well¹:

North

North

South

Southeast

¹⁾ Water well information obtained from the Colorado Department of Water Resources online database.

²⁾ Site specific gradient determined from Terracon's Limited Soil, Groundwater, and Soil Gas Investigation (December 19, 2017).

^{*} Additional site and receptor information obtained from Colorado Oil and Gas Conservation Commission (COGCC) online database.

APPENDIX C - SOIL BORING LOGS

	WELL LOG N						Pa	ge 1 of 1
PR	OJECT: Wertman #1 O&G Well	CLIENT:	City of Longmor Longmont, Colo	nt rado				
SIT	TE: Wertman #1 O&G Well Longmont, Colorado							
GRAPHIC LOG	LOCATION See Exhibit A-2		INSTALLATION DETAILS Well Completion:	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH MATERIAL DESCRIPTION POORY GRADED SAND (SP-SC), tan, dry, grass at the surface 4.0		-2" diameter ———————————————————————————————————	-			00 ND	
N_DAIAIEMPLAIE.GDI 9/22/1	SANDY CLAY (CL), tan to brown, moist			5 -	-	10	00 ND	
SMARTIOG 22177047 GINT.GPJ JERRACON DATATEMPLATE.GDT 6/22/18	11.0 POORLY GRADED SAND WITH GRAVEL (SP), tan, wet		-2" diamerter PVC screen	10-		8	0 ND	SB-01 10-11'
ENVIRONMENTAL SMART LOG	16.0		-sand filter pack around screen	- 15-	-	10	00 ND	
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. But a power b	Refusal at 16 Feet							
PARATEC	The stratification lines represent the approximate transition between differing soil types are in-situ these transitions may be gradual or may occur at different depths than shown.	nd/or rock types;	Hammer Type:	Automat	ic			
Advand Pnu Aband Bori	cement Method: matic drive onment Method: ng completed as groundwater monitoring		Notes: Logged by DNS ND indicates a p million (ppm)	photoioniz	zation (P	ID) read	ng of less	than 1 parts per
	WATER LEVEL OBSERVATIONS		Well Started: 05-0	12-2012		Well (`ompleted	l: 05-02-2018
	observed during drilling	200	Drill Rig: Geoprob				: DrillPro	i. UU-UZ-ZU IÖ
HIS H			Project No.: 2217			Exhibi		 I

		V	/ELL LOG N	IO. SB-	-02/ N	IW-02					Pag	ge 1 of 1
PR	OJECT:	Wertman #1 O&G Well		CLIENT:	City of	Longmon	it rado					
SIT	Œ:	Wertman #1 O&G Well Longmont, Colorado				.,						
GRAPHIC LOG		N See Exhibit A-2		•	INSTALLA	TION DETAILS	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH SAND	MATERIAL DESC DY SILTY CLAY (CL-ML), tan, dry, grass			-2" diamete PVC riser -bentonite (partially hydrated) s around rise	——► seal	- - -	-		90	ND	
		DY CLAY (CL), tan to brown, moist					5 - -	-		50	ND	
	11.0 <u>POO</u> I	RLY GRADED SAND WITH GRAVEL (SF	-) , tan, wet		-2" diamerte PVC scree	er	- 10- -			70	ND	SB-02 8-11'
	16.0				-sand filter pack arour screen	—₩:日:	- 15 -	-		100	ND	
Advance Pnui	Borir	ng Terminated at 16 Feet										
		cation lines represent the approximate transition be e transitions may be gradual or may occur at diffe		d/or rock types;		Hammer Type:	Automat	tic				
Advance Pnui Abande Borii	cement Methormatic drive					Notes: Logged by DNS ND indicates a p million (ppm)	hotoioniz	zation (F	PID) re	eading	of less	than 1 parts per
	WATE	ER LEVEL OBSERVATIONS	75		w	/ell Started: 05-0	2-2018		We	ell Com	npleted:	05-02-2018
	observed	d during drilling	lerr	300		rill Rig: Geoprobe			-	iller: Dr	-	
			-	,		roject No.: 22177			Ex	hibit:	B-2	

		V	/ELL LOG N	IO. SB-	-03/ N	1W-03					Pag	ge 1 of 1
PR	OJECT:	Wertman #1 O&G Well		CLIENT:	City of Lonan	Longmon	it rado					
SIT	ΓE:	Wertman #1 O&G Well Longmont, Colorado				ŕ						
GRAPHIC LOG	LOCATION	N See Exhibit A-2			INSTALLA	ATION DETAILS	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH SAND	MATERIAL DESC DY SILTY CLAY (CL-ML), tan, dry, grass a						-0	0)	œ		
	4.0				-2" diamete PVC riser -bentonite (partially hydrated) around ris	——► seal	-	_		100	ND	
		OY CLAY (CL), tan to brown, moist					5 - -	-		100	ND	
	12.0				-2" diamer PVC scree	ter	- 10- -	-		100	ND	SB-03 9-10'
	POOF	RLY GRADED SAND WITH GRAVEL (SF	?) , tan, wet		-sand filter pack arou screen		- - 15-			100	ND	
	16.0 Borir	ng Terminated at 16 Feet					-					
Advand Pnu Abandd Bori												
		cation lines represent the approximate transition be e transitions may be gradual or may occur at diffe		d/or rock types;		Hammer Type:	Automat	tic				
Advand Pnu Aband Bori	cement Metho matic drive onment Metho ng completed					Notes: Logged by DNS ND indicates a pl million (ppm)	hotoioniz	zation (F	PID) re	eading (of less	than 1 parts per
		ER LEVEL OBSERVATIONS				Vell Started: 05-0	2 2049		147	all Carr	nlotod.	05 02 2049
$\overline{\nabla}$		during drilling	Nerr	900	ח(Orill Rig: Geoprobe				iller: Dr	-	05-02-2018
			-			Project No.: 22177			+	hibit:	B-3	

		WELL LOG N	IO. SB-	·04/ M\	V-04					Pa	ge 1 of 1
F	PRC	OJECT: Wertman #1 O&G Well	CLIENT:	City of L Longmo	ongmon	it rado					
5	SITE	E: Wertman #1 O&G Well Longmont, Colorado			,						
SOLUMBA		LOCATION See Exhibit A-2 DEPTH MATERIAL DESCRIPTION	•	INSTALLATIO		DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
8		SANDY SILT (CL-ML), tan, dry, grass at the surface		-2" diameter PVC riser -bentonite (partially hydrated) sea around riseer		-	-		100	ND	
SMART LOG 22177047_GINT GPJ TERRACON_DATATEMPLATE.GDT 6/22/18		SANDY LEAN CLAY (CL), tan to brown, moist				5 - -	-		100	ND	
22177047_GINT.GPJ TERRACO	1	1.0 POORLY GRADED SAND (SP), tan, wet		-2" diamerter PVC screen		10-			100	ND	SB-04 8-10'
IRONMENTAL	1	6.0		-sand filter pack around screen		- 15 -	-		100	ND	
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. E		Boring Terminated at 16 Feet									
PARATE		The stratification lines represent the approximate transition between differing soil types an in-situ these transitions may be gradual or may occur at different depths than shown.	d/or rock types;	Н	ammer Type:	Automat	ic	<u> </u>		I	I
G IS NOT VALID IF SE	num	ment Method: atic drive ment Method: g completed as groundwater monitoring		Lo NE	tes: gged by DNS indicates a p llion (ppm)	hotoioniz	ration (F	PID) re	eading	of less	than 1 parts per
NG LO	7	WATER LEVEL OBSERVATIONS		Wel	Started: 05-0	2-2018		W	ell Com	npleted:	05-02-2018
BOR!	<u></u>	observed during drilling	360	Drill	Rig: Geoprobe	e		Dr	iller: Dr	illPro	
THIS			,	Proj	ect No.: 22177	047		Ex	hibit:	B-4	

		WELL LO	1						Pag	ge 1 of 1
PR	OJECT: Wertman #1 O&G Well		CLIENT:	City of Long Longmont, C	mont Colorado					
SIT	E: Wertman #1 O&G Well Longmont, Colorado			_						
LOG	LOCATION See Exhibit A-2		•	INSTALLATION DET		VEL IONS	YPE	(%))	SENT 3 EER)
GRAPHIC LOG				Well Consolation	DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB (ID NUMBER)
	DEPTH MATERIAL DES	CCPIDTION .		Well Completion:		WAT	SAM	RECC		SAN (ID
	POORLY GRADED SAND WITH CLAY (SP		surface	top cap	3 13					
					-	-				
				bentonite seal	-					
				screen pack in						
				sand	5 -	-				
<u>:</u> //	6.0 Boring Terminated at 6 Feet				-					
	The stratification lines represent the approximate transitio	n hetween differing soil types an	id/or rock types:	Hammer	Type: Automa	tic				
	in-situ these transitions may be gradual or may occur at d	ifferent depths than shown.	aro. rook typoo,	, idiiiiio	Type: 7 tatema					
	ement Method: matic drive			Notes:	DNC					
				Logged by ND indica million (p	tes a photoioni	zation (F	PID) rea	ading o	of less t	han 1 parts p
	onment Method: ng completed as soil vapor point			·······σ·· (ρ)	,					
							_			
	WATER LEVEL OBSERVATIONS Groundwater not observed during drilling	- Terr		Well Starte	d: 05-02-2018		We	II Com	pleted:	05-02-2018
			ULL	Drill Rig: G	eoprobe		Dril	ler: Dri	illPro	
			,	Project No.	: 22177047		Exh	nibit:	B-5	

	CLIENT:	City of Longmon Longmont, Color	t .					e 1 of '
		Longmont, Color	ado					
SITE: Wertman #1 O&G Well Longmont, Colorado								
D LOCATION See Exhibit A-2	+	INSTALLATION DETAILS		⊩ NS	믭	(%)		뉟
O CATION See Exhibit A-2			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB
AAPH		Well Completion:	DEPT	TER	MPL	SOVE	ο Q d	MPL 5
O DEPTH MATERIAL DESCRIPTION			_	W/ OBS	SAI	RE		8
POORLY GRADED SAND WITH CLAY (SP-SC), tan, dry, grass a	at the surface	top cap						
			_					
		bentonite seal	_					
		boritorino ocar						
			-					
			_					
		screen pack in						
5.5		sand	5 –	_				
Boring Terminated at 5.5 Feet		<u> </u>						
The stratification lines represent the approximate transition between differing soil to	/pes and/or rock types;	Hammer Type:	Automat	ic				
in-situ these transitions may be gradual or may occur at different depths than show	rpes and/or rock types; rn.	Hammer Type:	Automat	ic				
The stratification lines represent the approximate transition between differing soil ty in-situ these transitions may be gradual or may occur at different depths than show dvancement Method: Pnumatic drive	rpes and/or rock types; rn.	Notes:	Automat	ic				
in-situ these transitions may be gradual or may occur at different depths than show dvancement Method:	vpes and/or rock types; rn.	Notes: Logged by DNS ND indicates a pl			PID) re	eading o	of less ti	nan 1 par
in-situ these transitions may be gradual or may occur at different depths than show dvancement Method: Pnumatic drive pandonment Method:	/pes and/or rock types; /n.	Notes: Logged by DNS			PID) re	eading o	of less the	nan 1 par
in-situ these transitions may be gradual or may occur at different depths than show dvancement Method:	rpes and/or rock types; rn.	Notes: Logged by DNS ND indicates a pl			PID) re	eading o	of less ti	nan 1 par
in-situ these transitions may be gradual or may occur at different depths than show dvancement Method: Pnumatic drive pandonment Method: Boring completed as soil vapor point	n.	Notes: Logged by DNS ND indicates a pl million (ppm)	notoioniz					
in-situ these transitions may be gradual or may occur at different depths than show dvancement Method: Pnumatic drive pandonment Method: Boring completed as soil vapor point	rpes and/or rock types;	Notes: Logged by DNS ND indicates a pl million (ppm)	notoioniz 2-2018		We		pleted:	nan 1 par 05-02-201

PROJECT: Wertman #1 O&G Well	CLIENT:	City of Longmor Longmont, Colo	nt .					ge 1 of
SITE: Wertman #1 O&G Well		Longmont, Colo	rado					
Longmont, Colorado								
D LOCATION See Exhibit A-2	•	INSTALLATION DETAILS		EL	PE	(%)		TN:
O CATION See Exhibit A-2			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (%)	OVA/PID (ppm)	SAMPLE SENT TO LAB
RAPH		Well Completion:	DEP1	TER SER	MPL	COVE	VO Pg	AMPL TO
© DEPTH MATERIAL DESCRIPTION				W/ OBS	SA	RE		/S
POORLY GRADED SAND WITH CLAY (SP-SC), tan to brown surface	n, dry, grass at the	top cap						
			-	1				
		bentonite seal	_					
		bentonite sear						
			-	1				
			_					
		screen pack in						
		sand	5 -	1				
6.0			_					
Boring Terminated at 6 Feet								
The stratification lines represent the approximate transition between differing sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ these transitions may be gradual or may occur at different depths than sin-situ the situation of the	soil types and/or rock types; shown.	Hammer Type:	Automat	ic				
in-situ these transitions may be gradual or may occur at different depths than s	soil types and/or rock types; shown.	Hammer Type:	Automat	ic				
The stratification lines represent the approximate transition between differing s in-situ these transitions may be gradual or may occur at different depths than stransment Method: Pnumatic drive	soil types and/or rock types; shown.	Notes: Logged by DNS						
in-situ these transitions may be gradual or may occur at different depths than selection depths d	soil types and/or rock types; shown.	Notes:			PID) re	eading	of less	than 1 par
in-situ these transitions may be gradual or may occur at different depths than set of the set of th	soil types and/or rock types; shown.	Notes: Logged by DNS ND indicates a p			PID) re	eading	of less	than 1 par
in-situ these transitions may be gradual or may occur at different depths than solvencement Method: Pnumatic drive pandonment Method: Boring completed as soil vapor point	soil types and/or rock types; shown.	Notes: Logged by DNS ND indicates a p			PID) re	eading	of less	than 1 par
in-situ these transitions may be gradual or may occur at different depths than sidvancement Method: Pnumatic drive pandonment Method: Boring completed as soil vapor point	shown.	Notes: Logged by DNS ND indicates a p million (ppm)	hotoioniz		· T			
in-situ these transitions may be gradual or may occur at different depths than sidvancement Method: Pnumatic drive pandonment Method: Boring completed as soil vapor point	soil types and/or rock types; shown.	Notes: Logged by DNS ND indicates a p million (ppm)	hotoioniz 2-2018		We		npleted:	than 1 par 05-02-20

APPENDIX D – ANALYTICAL REPORTS AND CHAINS OF CUSTODY

ANALYTICAL REPORT May 11, 2018

Terracon Consultants, Inc - Longmont, CO

Sample Delivery Group: L991462

Samples Received: 05/05/2018

Project Number: 22177047

Description: Wertman #1

Report To: Michael Skridulis

1242 Bramwood Place

Longmont, CO 80501

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SB-01 L991462-01	5
SB-02 L991462-02	7
SB-03 L991462-03	9
SB-04 L991462-04	11
Qc: Quality Control Summary	13
Volatile Organic Compounds (GC) by Method 8015D/GRO	13
Volatile Organic Compounds (GC/MS) by Method 8260B	14
Semi-Volatile Organic Compounds (GC) by Method 8015	18
GI: Glossary of Terms	19
Al: Accreditations & Locations	20
Sc: Sample Chain of Custody	21

			Collected by	Collected date/time	Received date/time
SB-01 L991462-01 Solid			Drew Stephens	05/01/18 08:30	05/05/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1107979	1	05/07/18 07:53	05/08/18 01:59	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1108851	1	05/07/18 07:53	05/09/18 17:55	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1109163	1	05/09/18 16:28	05/11/18 06:43	DMW
			Collected by	Collected date/time	Received date/time
SB-02 L991462-02 Solid			Drew Stephens	05/01/18 09:50	05/05/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1107979	1	05/07/18 07:53	05/08/18 02:21	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1108851	1	05/07/18 07:53	05/09/18 18:14	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1109163	1	05/09/18 16:28	05/11/18 06:56	DMW
			Collected by	Collected date/time	Received date/time
SB-03 L991462-03 Solid			Drew Stephens	05/01/18 09:10	05/05/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1107979	1	05/07/18 07:53	05/08/18 02:43	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1108851	1	05/07/18 07:53	05/09/18 18:32	JHH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1109163	1	05/09/18 16:28	05/11/18 07:10	DMW
			Collected by	Collected date/time	Received date/time
SB-04 L991462-04 Solid			Drew Stephens	05/01/18 11:20	05/05/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1107979	1	05/07/18 07:53	05/08/18 03:05	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1108851	1	05/07/18 07:53	05/09/18 18:51	JHH

WG1109163

SAMPLE SUMMARY

Semi-Volatile Organic Compounds (GC) by Method 8015

05/09/18 16:28

05/11/18 07:23

DMW

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Technical Service Representative

lapline R Richards

PAGE: 4 of 21

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 08:30

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/08/2018 01:59	WG1107979
(S) a,a,a-Trifluorotoluene(FID)	92.6		77.0-120		05/08/2018 01:59	WG1107979

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
ınalyte	mg/kg		mg/kg		date / time	_
cetone	ND		0.0250	1	05/09/2018 17:55	WG1108851
crylonitrile	ND		0.0125	1	05/09/2018 17:55	WG1108851
lenzene	ND		0.00100	1	05/09/2018 17:55	WG1108851
romobenzene	ND		0.0125	1	05/09/2018 17:55	WG1108851
romodichloromethane	ND		0.00250	1	05/09/2018 17:55	WG1108851
romoform	ND		0.0250	1	05/09/2018 17:55	WG1108851
romomethane	ND		0.0125	1	05/09/2018 17:55	WG1108851
-Butylbenzene	ND		0.0125	1	05/09/2018 17:55	WG1108851
ec-Butylbenzene	ND		0.0125	1	05/09/2018 17:55	WG1108851
ert-Butylbenzene	ND		0.00500	1	05/09/2018 17:55	WG1108851
Carbon tetrachloride	ND		0.00500	1	05/09/2018 17:55	WG1108851
hlorobenzene	ND		0.00250	1	05/09/2018 17:55	WG1108851
hlorodibromomethane	ND		0.00250	1	05/09/2018 17:55	WG1108851
hloroethane	ND		0.00500	1	05/09/2018 17:55	WG1108851
hloroform	ND		0.00350	1	05/09/2018 17:55	WG1108851
hloromethane	ND		0.00250	1	05/09/2018 17:55	WG1108851
-Chlorotoluene	ND		0.00250	1	05/09/2018 17:55	WG1108851
-Chlorotoluene	ND		0.00500	1	05/09/2018 17:55	WG1108851
2-Dibromo-3-Chloropropane	ND		0.00500	1	05/09/2018 17:55	WG1108851
2-Dibromoethane	ND		0.0250	1	05/09/2018 17:55	WG1108851
ibromomethane	ND		0.00230	1	05/09/2018 17:55	WG1108851
2-Dichlorobenzene	ND		0.00500	1	05/09/2018 17:55	WG1108851
3-Dichlorobenzene	ND		0.00500	1	05/09/2018 17:55	WG1108851
4-Dichlorobenzene	ND		0.00500	1	05/09/2018 17:55	WG1108851
ichlorodifluoromethane	ND		0.00300	1	05/09/2018 17:55	WG1108851
			0.00250	1		
1-Dichloroethane	ND ND		0.00250	1	05/09/2018 17:55	WG1108851
2-Dichloroethane					05/09/2018 17:55	WG1108851
1-Dichloroethene	ND		0.00250	1	05/09/2018 17:55	WG1108851
is-1,2-Dichloroethene	ND		0.00250	1	05/09/2018 17:55	WG1108851
ans-1,2-Dichloroethene	ND		0.00500	1	05/09/2018 17:55	WG1108851
2-Dichloropropane	ND		0.00500	1	05/09/2018 17:55	WG1108851
1-Dichloropropene	ND		0.00250	1	05/09/2018 17:55	WG1108851
3-Dichloropropane	ND		0.00500	1	05/09/2018 17:55	WG1108851
s-1,3-Dichloropropene	ND		0.00250	1	05/09/2018 17:55	WG1108851
ans-1,3-Dichloropropene	ND		0.00500	1	05/09/2018 17:55	WG1108851
,2-Dichloropropane	ND		0.00250	1	05/09/2018 17:55	WG1108851
i-isopropyl ether	ND		0.00100	1	05/09/2018 17:55	WG1108851
thylbenzene	ND		0.00250	1	05/09/2018 17:55	WG1108851
exachloro-1,3-butadiene	ND		0.0250	1	05/09/2018 17:55	<u>WG1108851</u>
opropylbenzene	ND		0.00250	1	05/09/2018 17:55	<u>WG1108851</u>
Isopropyltoluene	ND		0.00500	1	05/09/2018 17:55	<u>WG1108851</u>
-Butanone (MEK)	ND		0.0250	1	05/09/2018 17:55	<u>WG1108851</u>
ethylene Chloride	ND		0.0250	1	05/09/2018 17:55	<u>WG1108851</u>
-Methyl-2-pentanone (MIBK)	ND		0.0250	1	05/09/2018 17:55	<u>WG1108851</u>
ethyl tert-butyl ether	ND		0.00100	1	05/09/2018 17:55	WG1108851
aphthalene	ND		0.0125	1	05/09/2018 17:55	WG1108851
Propylbenzene	ND		0.00500	1	05/09/2018 17:55	WG1108851
tyrene	ND		0.0125	1	05/09/2018 17:55	WG1108851
	ND		0.00250	1	05/09/2018 17:55	WG1108851

Analyte

Toluene

1,1,2,2-Tetrachloroethane

Tetrachloroethene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,2,3-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

Trichloroethene

1,1,2-Trichlorotrifluoroethane

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 08:30

RDL

mg/kg

0.00250

0.00250

0.00250

0.00500

0.00250

0.00250

0.00250

0.00100

0.00250

0.0125

0.00500

0.00500

0.00500

0.00250

0.00650

80.0-120

74.0-131

64.0-132

1

1

0.0125

Qualifier

Analysis

date / time

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

05/09/2018 17:55

<u>Batch</u>

WG1108851

WG1108851

WG1108851 WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

WG1108851

Dilution

³ Ss	

^⁴ Cn

Semi-Volatile Organic Compounds (GC) by Method 8015

Volatile Organic Compounds (GC/MS) by Method 8260B Result

mg/kg

ND

111

102

114

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND	<u>J3 J4</u>	4.00	1	05/11/2018 06:43	WG1109163
C28-C40 Oil Range	ND		4.00	1	05/11/2018 06:43	WG1109163
(S) o-Terphenyl	59.4		18.0-148		05/11/2018 06:43	WG1109163

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 09:50

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/08/2018 02:21	WG1107979
(S) a,a,a-Trifluorotoluene(FID)	91.8		77.0-120		05/08/2018 02:21	WG1107979

Analyte	Result mg/kg	Qualifier	RDL mg/kg	Dilution	Analysis date / time	<u>Batch</u>
Acetone	ND		0.0250	1	05/09/2018 18:14	WG1108851
Acrylonitrile	ND		0.0125	1	05/09/2018 18:14	WG1108851
Benzene	ND		0.00100	1	05/09/2018 18:14	WG1108851
Bromobenzene	ND		0.0125	1	05/09/2018 18:14	WG1108851
Bromodichloromethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Bromoform	ND		0.0250	1	05/09/2018 18:14	WG1108851
Bromomethane	ND		0.0125	1	05/09/2018 18:14	WG1108851
n-Butylbenzene	ND		0.0125	1	05/09/2018 18:14	WG1108851
sec-Butylbenzene	ND		0.0125	1	05/09/2018 18:14	WG1108851
tert-Butylbenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
Carbon tetrachloride	ND		0.00500	1	05/09/2018 18:14	WG1108851
Chlorobenzene	ND		0.00250	1	05/09/2018 18:14	WG1108851
Chlorodibromomethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Chloroethane	ND		0.00500	1	05/09/2018 18:14	WG1108851
Chloroform	ND		0.00250	1	05/09/2018 18:14	WG1108851
Chloromethane	ND		0.0125	1	05/09/2018 18:14	WG1108851
2-Chlorotoluene	ND		0.00250	1	05/09/2018 18:14	WG1108851
4-Chlorotoluene	ND		0.00500	1	05/09/2018 18:14	WG1108851
1,2-Dibromo-3-Chloropropane	ND		0.0250	1	05/09/2018 18:14	WG1108851
.2-Dibromoethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Dibromomethane	ND		0.00500	1	05/09/2018 18:14	WG1108851
,2-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
,3-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
,4-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
Dichlorodifluoromethane	ND		0.00300	1	05/09/2018 18:14	WG1108851
,1-Dichloroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
,2-Dichloroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
1,1-Dichloroethene	ND		0.00250	1	05/09/2018 18:14	WG1108851
cis-1,2-Dichloroethene	ND		0.00250	1	05/09/2018 18:14	WG1108851
•	ND ND		0.00250	1	05/09/2018 18:14	WG1108851
rans-1,2-Dichloroethene			0.00500	1		
I,2-Dichloropropane	ND				05/09/2018 18:14	WG1108851
l,1-Dichloropropene	ND		0.00250	1	05/09/2018 18:14	WG1108851
l,3-Dichloropropane	ND		0.00500	1	05/09/2018 18:14	WG1108851
cis-1,3-Dichloropropene	ND		*****	1	05/09/2018 18:14	WG1108851
rans-1,3-Dichloropropene	ND		0.00500	1	05/09/2018 18:14	WG1108851
2,2-Dichloropropane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Di-isopropyl ether	ND		0.00100	1	05/09/2018 18:14	WG1108851
Ethylbenzene	ND		0.00250	1	05/09/2018 18:14	WG1108851
Hexachloro-1,3-butadiene	ND		0.0250	1	05/09/2018 18:14	WG1108851
sopropylbenzene	ND		0.00250	1	05/09/2018 18:14	WG1108851
o-Isopropyltoluene	ND		0.00500	1	05/09/2018 18:14	WG1108851
2-Butanone (MEK)	ND		0.0250	1	05/09/2018 18:14	WG1108851
Methylene Chloride	ND		0.0250	1	05/09/2018 18:14	WG1108851
4-Methyl-2-pentanone (MIBK)	ND		0.0250	1	05/09/2018 18:14	WG1108851
Methyl tert-butyl ether	ND		0.00100	1	05/09/2018 18:14	WG1108851
Naphthalene	ND		0.0125	1	05/09/2018 18:14	<u>WG1108851</u>
n-Propylbenzene	ND		0.00500	1	05/09/2018 18:14	<u>WG1108851</u>
Styrene	ND		0.0125	1	05/09/2018 18:14	WG1108851
,1,1,2-Tetrachloroethane	ND		0.00250	1	05/09/2018 18:14	<u>WG1108851</u>

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 09:50

L991462

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
1,1,2-Trichlorotrifluoroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Tetrachloroethene	ND		0.00250	1	05/09/2018 18:14	WG1108851
Toluene	ND		0.00500	1	05/09/2018 18:14	WG1108851
1,2,3-Trichlorobenzene	ND		0.00250	1	05/09/2018 18:14	WG1108851
1,2,4-Trichlorobenzene	ND		0.0125	1	05/09/2018 18:14	WG1108851
1,1,1-Trichloroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
1,1,2-Trichloroethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
Trichloroethene	ND		0.00100	1	05/09/2018 18:14	WG1108851
Trichlorofluoromethane	ND		0.00250	1	05/09/2018 18:14	WG1108851
1,2,3-Trichloropropane	ND		0.0125	1	05/09/2018 18:14	WG1108851
1,2,4-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
1,2,3-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
1,3,5-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:14	WG1108851
Vinyl chloride	ND		0.00250	1	05/09/2018 18:14	WG1108851
Xylenes, Total	ND		0.00650	1	05/09/2018 18:14	WG1108851
(S) Toluene-d8	112		80.0-120		05/09/2018 18:14	WG1108851
(S) Dibromofluoromethane	100		74.0-131		05/09/2018 18:14	WG1108851
(S) 4-Bromofluorobenzene	114		64.0-132		05/09/2018 18:14	WG1108851

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND	<u>J3 J4</u>	4.00	1	05/11/2018 06:56	WG1109163
C28-C40 Oil Range	ND		4.00	1	05/11/2018 06:56	WG1109163
(S) o-Terphenyl	47.8		18.0-148		05/11/2018 06:56	WG1109163

Ss

Cn

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 09:10

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/08/2018 02:43	WG1107979
(S) a,a,a-Trifluorotoluene(FID)	92.6		77.0-120		05/08/2018 02:43	WG1107979

Analyte	Result mg/kg	Qualifier	RDL mg/kg	Dilution	Analysis date / time	<u>Batch</u>
Acetone	ND		0.0250	1	05/09/2018 18:32	WG1108851
Acrylonitrile	ND		0.0125	1	05/09/2018 18:32	WG1108851
Benzene	ND		0.00100	1	05/09/2018 18:32	WG1108851
Bromobenzene	ND		0.0125	1	05/09/2018 18:32	WG1108851
Bromodichloromethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
Bromoform	ND		0.0250	1	05/09/2018 18:32	WG1108851
Bromomethane	ND		0.0125	1	05/09/2018 18:32	WG1108851
n-Butylbenzene	ND		0.0125	1	05/09/2018 18:32	WG1108851
sec-Butylbenzene	ND		0.0125	1	05/09/2018 18:32	WG1108851
tert-Butylbenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
Carbon tetrachloride	ND		0.00500	1	05/09/2018 18:32	WG1108851
Chlorobenzene	ND		0.00250	1	05/09/2018 18:32	WG1108851
Chlorodibromomethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
Chloroethane	ND		0.00500	1	05/09/2018 18:32	WG1108851
Chloroform	ND		0.00300	1	05/09/2018 18:32	WG1108851
Chloromethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
2-Chlorotoluene	ND		0.00250	1	05/09/2018 18:32	WG1108851
1-Chlorotoluene	ND		0.00230	1	05/09/2018 18:32	WG1108851
,2-Dibromo-3-Chloropropane	ND		0.00500	1	05/09/2018 18:32	WG1108851
.2-Dibromoethane	ND		0.0230	1	05/09/2018 18:32	WG1108851
Dibromomethane	ND		0.00230	1	05/09/2018 18:32	WG1108851
,2-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
,3-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
,4-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
Dichlorodifluoromethane	ND		0.00300	1	05/09/2018 18:32	WG1108851
	ND ND		0.00250	1		
,1-Dichloroethane			0.00250		05/09/2018 18:32	WG1108851 WG1108851
,2-Dichloroethane	ND			1	05/09/2018 18:32	
l,1-Dichloroethene	ND		0.00250 0.00250	1	05/09/2018 18:32	WG1108851
cis-1,2-Dichloroethene	ND			1	05/09/2018 18:32	WG1108851
rans-1,2-Dichloroethene	ND		0.00500	1	05/09/2018 18:32	WG1108851
,2-Dichloropropane	ND		0.00500	1	05/09/2018 18:32	WG1108851
,1-Dichloropropene	ND		0.00250	1	05/09/2018 18:32	WG1108851
l,3-Dichloropropane	ND		0.00500	1	05/09/2018 18:32	WG1108851
cis-1,3-Dichloropropene	ND		0.00250	1	05/09/2018 18:32	WG1108851
rans-1,3-Dichloropropene	ND		0.00500	1	05/09/2018 18:32	WG1108851
2,2-Dichloropropane	ND		0.00250	1	05/09/2018 18:32	WG1108851
Di-isopropyl ether	ND		0.00100	1	05/09/2018 18:32	WG1108851
Ethylbenzene	ND		0.00250	1	05/09/2018 18:32	WG1108851
Hexachloro-1,3-butadiene	ND		0.0250	1	05/09/2018 18:32	WG1108851
sopropylbenzene	ND		0.00250	1	05/09/2018 18:32	WG1108851
o-Isopropyltoluene	ND		0.00500	1	05/09/2018 18:32	WG1108851
2-Butanone (MEK)	0.0307		0.0250	1	05/09/2018 18:32	WG1108851
Methylene Chloride	ND		0.0250	1	05/09/2018 18:32	WG1108851
4-Methyl-2-pentanone (MIBK)	ND		0.0250	1	05/09/2018 18:32	<u>WG1108851</u>
Methyl tert-butyl ether	ND		0.00100	1	05/09/2018 18:32	<u>WG1108851</u>
Naphthalene	ND		0.0125	1	05/09/2018 18:32	<u>WG1108851</u>
n-Propylbenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
Styrene	ND		0.0125	1	05/09/2018 18:32	<u>WG1108851</u>
,1,1,2-Tetrachloroethane	ND		0.00250	1	05/09/2018 18:32	WG1108851

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 09:10

(S) 4-Bromofluorobenzene

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
1,1,2-Trichlorotrifluoroethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
Tetrachloroethene	0.00295		0.00250	1	05/09/2018 18:32	WG1108851
Toluene	ND		0.00500	1	05/09/2018 18:32	WG1108851
1,2,3-Trichlorobenzene	ND		0.00250	1	05/09/2018 18:32	WG1108851
1,2,4-Trichlorobenzene	ND		0.0125	1	05/09/2018 18:32	WG1108851
1,1,1-Trichloroethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
1,1,2-Trichloroethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
Trichloroethene	ND		0.00100	1	05/09/2018 18:32	WG1108851
Trichlorofluoromethane	ND		0.00250	1	05/09/2018 18:32	WG1108851
1,2,3-Trichloropropane	ND		0.0125	1	05/09/2018 18:32	WG1108851
1,2,4-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
1,2,3-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
1,3,5-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:32	WG1108851
Vinyl chloride	ND		0.00250	1	05/09/2018 18:32	WG1108851
Xylenes, Total	ND		0.00650	1	05/09/2018 18:32	WG1108851
(S) Toluene-d8	110		80.0-120		05/09/2018 18:32	WG1108851
(S) Dibromofluoromethane	106		74.0-131		05/09/2018 18:32	WG1108851

Ss

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND	<u>J3 J4</u>	4.00	1	05/11/2018 07:10	WG1109163
C28-C40 Oil Range	ND		4.00	1	05/11/2018 07:10	WG1109163
(S) o-Terphenvl	34.9		18.0-148		05/11/2018 07:10	WG1109163

05/09/2018 18:32

SDG:

L991462

DATE/TIME:

05/11/18 14:02

PAGE:

10 of 21

64.0-132

WG1108851

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 11:20

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPH (GC/FID) Low Fraction	ND	0.100		1	05/08/2018 03:05	WG1107979
(S) a,a,a-Trifluorotoluene(FID)	93.3		77.0-120		05/08/2018 03:05	WG1107979

Ss

Volatile Organic Compounds (GC/MS) by Method 8260R

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.0250	1	05/09/2018 18:51	WG1108851
Acrylonitrile	ND		0.0125	1	05/09/2018 18:51	WG1108851
Benzene	ND		0.00100	1	05/09/2018 18:51	WG1108851
Bromobenzene	ND		0.0125	1	05/09/2018 18:51	WG1108851
Bromodichloromethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
Bromoform	ND		0.0250	1	05/09/2018 18:51	WG1108851
Bromomethane	ND		0.0125	1	05/09/2018 18:51	WG1108851
n-Butylbenzene	ND		0.0125	1	05/09/2018 18:51	WG1108851
sec-Butylbenzene	ND		0.0125	1	05/09/2018 18:51	WG1108851
tert-Butylbenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
Carbon tetrachloride	ND		0.00500	1	05/09/2018 18:51	WG1108851
Chlorobenzene	ND		0.00250	1	05/09/2018 18:51	WG1108851
Chlorodibromomethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
Chloroethane	ND		0.00500	1	05/09/2018 18:51	WG1108851
Chloroform	ND		0.00250	1	05/09/2018 18:51	WG1108851
Chloromethane	ND		0.0125	1	05/09/2018 18:51	WG1108851
2-Chlorotoluene	ND		0.00250	1	05/09/2018 18:51	WG1108851
4-Chlorotoluene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,2-Dibromo-3-Chloropropane	ND		0.0250	1	05/09/2018 18:51	WG1108851
1,2-Dibromoethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
Dibromomethane	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,2-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,3-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,4-Dichlorobenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
Dichlorodifluoromethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,1-Dichloroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,2-Dichloroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,1-Dichloroethene	ND		0.00250	1	05/09/2018 18:51	WG1108851
cis-1,2-Dichloroethene	ND		0.00250	1	05/09/2018 18:51	WG1108851
trans-1,2-Dichloroethene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,2-Dichloropropane	propane ND propene ND propane ND loropropene ND chloropropene ND opropane ND		0.00500	1	05/09/2018 18:51	WG1108851
1,1-Dichloropropene	propane ND propane ND propane ND propropene ND propropene ND propane ND		0.00250	1	05/09/2018 18:51	WG1108851
1,3-Dichloropropane	propane ND propane ND propane ND oropropene ND chloropropene ND propane ND		0.00500	1	05/09/2018 18:51	WG1108851
cis-1,3-Dichloropropene			0.00250	1	05/09/2018 18:51	WG1108851
trans-1,3-Dichloropropene			0.00500	1	05/09/2018 18:51	WG1108851
2,2-Dichloropropane			0.00250	1	05/09/2018 18:51	WG1108851
Di-isopropyl ether	ND		0.00100	1	05/09/2018 18:51	WG1108851
Ethylbenzene	ND		0.00250	1	05/09/2018 18:51	WG1108851
Hexachloro-1,3-butadiene	ND		0.0250	1	05/09/2018 18:51	WG1108851
Isopropylbenzene	ND		0.00250	1	05/09/2018 18:51	WG1108851
p-Isopropyltoluene	ND		0.00500	1	05/09/2018 18:51	WG1108851
2-Butanone (MEK)	0.0289		0.0250	1	05/09/2018 18:51	WG1108851
Methylene Chloride	ND		0.0250	1	05/09/2018 18:51	WG1108851
4-Methyl-2-pentanone (MIBK)	ND		0.0250	1	05/09/2018 18:51	WG1108851
Methyl tert-butyl ether	ND		0.0230	1	05/09/2018 18:51	WG1108851
Naphthalene	ND		0.00100	1	05/09/2018 18:51	WG1108851
n-Propylbenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
	ND		0.00300	1	05/09/2018 18:51	WG1108851
Styrene	NII)					

ONE LAB. NATIONWIDE.

Collected date/time: 05/01/18 11:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,1,2-Trichlorotrifluoroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
Tetrachloroethene	ND		0.00250	1	05/09/2018 18:51	WG1108851
Toluene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,2,3-Trichlorobenzene	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,2,4-Trichlorobenzene	ND		0.0125	1	05/09/2018 18:51	WG1108851
1,1,1-Trichloroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,1,2-Trichloroethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
Trichloroethene	ND		0.00100	1	05/09/2018 18:51	WG1108851
Trichlorofluoromethane	ND		0.00250	1	05/09/2018 18:51	WG1108851
1,2,3-Trichloropropane	ND		0.0125	1	05/09/2018 18:51	WG1108851
1,2,4-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,2,3-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
1,3,5-Trimethylbenzene	ND		0.00500	1	05/09/2018 18:51	WG1108851
Vinyl chloride	ND		0.00250	1	05/09/2018 18:51	WG1108851
Xylenes, Total	ND		0.00650	1	05/09/2018 18:51	WG1108851
(S) Toluene-d8	109		80.0-120		05/09/2018 18:51	WG1108851
(S) Dibromofluoromethane	106		74.0-131		05/09/2018 18:51	WG1108851
(S) 4-Bromofluorobenzene	111		64.0-132		05/09/2018 18:51	WG1108851

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND	<u>J3 J4</u>	4.00	1	05/11/2018 07:23	WG1109163
C28-C40 Oil Range	ND		4.00	1	05/11/2018 07:23	WG1109163
(S) o-Ternhenyl	291		18 0-148		05/11/2018 07:23	WG1109163

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method 8015D/GRO

L991462-01,02,03,04

Method Blank (MB)

(MB) R3307787-5 05/07/	/18 11:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.0			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3307787-3 05/07	/18 09:54 • (LCS	SD) R3307787	-4 05/07/18 10:	16							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	5.64	5.69	103	103	70.0-136			0.805	20	
(S) a,a,a-Trifluorotoluene(FID)				111	112	77.0-120					

L991685-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

$(\cap S) \mid S $	Q1625_0/	05/08/18 04:56	(MS) R3307787-6	05/08/18 05:19 . /	MSD	D3307787_7	05/08/18 05:49
(US) L3	991000-04	03/06/16 04.30 •	(IVIS) KSSU//6/-0	03/00/10 03.13 • (שכועו	K33U//0/-/	03/06/16 03.49

•	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.75	ND	50.4	45.5	29.4	26.5	25	10.0-147			10.3	30
(S) a,a,a-Trifluorotoluene(FID)					98.0	97.4		77.0-120				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L991462-01,02,03,04

Method Blank (MB)

(MB) R3308501-3 05/09/18 12:59 MB Result mg/kg MB Qualifier mg/kg MB MDL mg/kg Mg/kg MG MG<
Analyte mg/kg mg/kg mg/kg Acetone U 0.0137 0.02 Acrylonitrile U 0.00190 0.01 Benzene U 0.000400 0.00 Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00598 0.02 Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00155 0.00 Chlorobenzene U 0.00108 0.00 Chlorodibromomethane U 0.000573 0.00 Chloroform U 0.00108 0.00 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U
Analyte mg/kg mg/kg mg/kg Acetone U 0.0137 0.02 Acrylonitrile U 0.00190 0.01 Benzene U 0.000400 0.00 Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.02 Bromoform U 0.00598 0.02 Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00155 0.00 Chlorobenzene U 0.000188 0.00 Chlorodibromomethane U 0.000450 0.00 Chlorotothane U 0.00188 0.00 Chlorotothane U 0.00193 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U
Acetone U 0.0137 0.02 Acrylonitrile U 0.00190 0.01 Benzene U 0.000400 0.00 Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00370 0.01 Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00155 0.00 Chlorobenzene U 0.00108 0.00 Chlorodibromomethane U 0.00108 0.00 Chloroform U 0.00108 0.00 Chloroform U 0.00108 0.00 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U
Acrylonitrile U 0.00190 0.01 Benzene U 0.000400 0.00 Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00370 0.01 n-Butylbenzene U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00155 0.00 carbon tetrachloride U 0.00155 0.00 Chlorobenzene U 0.00108 0.00 Chlorodibromomethane U 0.000573 0.00 Chlorodibromomethane U 0.00108 0.00 Chloroform U 0.00108 0.00 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00113 0.00 1,2-Dichl
Benzene U 0.000400 0.00 Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorodibromomethane U 0.00108 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroform U 0.00108 0.00 Chloroform U 0.00139 0.01 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00510 0.02 1,2-Dichlorobenzene U 0.00170 0.00 1,3
Bromobenzene U 0.00105 0.01 Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00155 0.00 Chlorobenzene U 0.000573 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroform U 0.000450 0.00 Chloroform U 0.00139 0.00 Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 1,2-Dibromo-3-Chloropropane U 0.0013 0.00 1,2-Dibromoethane U 0.00510 0.00 1,2-Dic
Bromodichloromethane U 0.000788 0.00 Bromoform U 0.00598 0.02 Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroform U 0.00108 0.00 Chloroform U 0.00138 0.00 Chloroform U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U 0.00133 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00135 0.00 1,2-Dichl
Bromoform U 0.00598 0.02 Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroform U 0.00108 0.00 Chloroform U 0.00139 0.01 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00133 0.00 4-Chlorotoluene U 0.00133 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00510 0.02 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,1-
Bromomethane U 0.00370 0.01 n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000450 0.00 Chlorodibromomethane U 0.00108 0.00 Chlorothane U 0.0018 0.00 Chloroform U 0.0018 0.00 Chlorothane U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U 0.0013 0.00 4-Chlorotoluene U 0.0013 0.00 1,2-Dibromo-3-Chloropropane U 0.0013 0.00 1,2-Dibromoethane U 0.0010 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,1-Di
n-Butylbenzene U 0.00384 0.01 sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chlorothane U 0.00108 0.00 Chloroform U 0.00139 0.01 Chlorothane U 0.00139 0.01 Chlorothane U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U 0.00139 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.0013 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichloroethane U 0.000575 0.00 <
sec-Butylbenzene U 0.00253 0.01 tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.00108 0.00 Chlorotethane U 0.00108 0.00 Chloroform U 0.00139 0.01 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.0013 0.00 1,2-Dibromoethane U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00170 0.00 1,1-Dichloroethane U 0.000575 0.00
tert-Butylbenzene U 0.00155 0.00 Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chlorotethane U 0.00108 0.00 Chloroform U 0.00139 0.01 Chlorotoluene U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.01 4-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 1,2-Dibromo-3-Chloropropane U 0.00113 0.00 1,2-Dibromoethane U 0.00150 0.00 1,2-Dibromoethane U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichloroethane U 0.000575 0.00 1,1-Dichloroethane U 0.000575 0.00 1,1-Dichloroethene U 0.000570 0.00
Carbon tetrachloride U 0.00108 0.00 Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroethane U 0.00108 0.00 Chloroform U 0.000415 0.00 Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.00139 0.00 4-Chlorotoluene U 0.0013 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.000525 0.00 Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 1,1-Dichloroethane U 0.000575 0.00 1,1-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000590 0.00
Chlorobenzene U 0.000573 0.00 Chlorodibromomethane U 0.000450 0.00 Chloroethane U 0.00108 0.00 Chloroform U 0.000415 0.00 Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00525 0.00 Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00170 0.00 1,3-Dichlorobenzene U 0.00197 0.00 1,4-Dichloroethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloropropane U 0.000700 0.00
Chlorodibromomethane U 0.000450 0.00 Chloroethane U 0.00108 0.00 Chloroform U 0.000415 0.00 Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00525 0.00 1,2-Dibromoethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00175 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichloroethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0
Chloroethane U 0.00108 0.00 Chloroform U 0.000415 0.00 Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00100 0.00 1,2-Dibromoethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.000170 0.00 1,1-Dichloroethane U 0.000818 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00175 0.00 1,1-Dichloropropane U 0.000700 0.00
Chloroform U 0.000415 0.00 Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 1,1-Dichloroethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000570 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00175 0.00 1,1-Dichloropropane U 0.00175 0.00 1,3-Dichloropropane U 0.000775 0
Chloromethane U 0.00139 0.01 2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00100 0.00 1,2-Dibromoethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00170 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 1,4-Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,1-Dichloroethene U 0.000570 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.000750 0.00
2-Chlorotoluene U 0.000920 0.00 4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 1,4-Dichlorobenzene U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.000750 0.00
4-Chlorotoluene U 0.00113 0.00 1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.000525 0.00 Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00170 0.00 1,3-Dichlorobenzene U 0.00197 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00075 0.00
1,2-Dibromo-3-Chloropropane U 0.00510 0.02 1,2-Dibromoethane U 0.000525 0.00 Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.000175 0.00
1,2-Dibromoethane U 0.000525 0.00 Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.000700 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
Dibromomethane U 0.00100 0.00 1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 trans-1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,2-Dichlorobenzene U 0.00145 0.00 1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 trans-1,2-Dichloroethene U 0.00127 0.00 1,2-Dichloropropane U 0.000700 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,3-Dichlorobenzene U 0.00170 0.00 1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000500 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,4-Dichlorobenzene U 0.00197 0.00 Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
Dichlorodifluoromethane U 0.000818 0.00 1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,1-Dichloroethane U 0.000575 0.00 1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,2-Dichloroethane U 0.000475 0.00 1,1-Dichloroethene U 0.000500 0.00 cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropane U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,1-Dichloroethene U 0.000500 0.000500 cis-1,2-Dichloroethene U 0.000690 0.000 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropene U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
cis-1,2-Dichloroethene U 0.000690 0.00 trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropene U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
trans-1,2-Dichloroethene U 0.00143 0.00 1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropene U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,2-Dichloropropane U 0.00127 0.00 1,1-Dichloropropene U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,1-Dichloropropene U 0.000700 0.00 1,3-Dichloropropane U 0.00175 0.00
1,3-Dichloropropane U 0.00175 0.00
sis 1.2 Dishlerenzanona II
cis-1,3-Dichloropropene U 0.000678 0.00
trans-1,3-Dichloropropene U 0.00153 0.00
2,2-Dichloropropane U 0.000793 0.00
Di-isopropyl ether U 0.000350 0.00
Ethylbenzene U 0.000530 0.00
Hexachloro-1,3-butadiene U 0.0127 0.02

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L991462-01,02,03,04

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
p-Isopropyltoluene	U		0.00233	0.00500
2-Butanone (MEK)	U		0.0125	0.0250
Methylene Chloride	0.0128	<u>J</u>	0.00664	0.0250
4-Methyl-2-pentanone (MIBK)	U		0.0100	0.0250
Methyl tert-butyl ether	U		0.000295	0.00100
Naphthalene	U		0.00312	0.0125
n-Propylbenzene	U		0.00118	0.00500
Styrene	U		0.00273	0.0125
1,1,1,2-Tetrachloroethane	U		0.000500	0.00250
1,1,2,2-Tetrachloroethane	U		0.000390	0.00250
Tetrachloroethene	U		0.000700	0.00250
Toluene	U		0.00125	0.00500
1,1,2-Trichlorotrifluoroethane	U		0.000675	0.00250
1,2,3-Trichlorobenzene	U		0.000625	0.00250
1,2,4-Trichlorobenzene	U		0.00482	0.0125
1,1,1-Trichloroethane	U		0.000275	0.00250
1,1,2-Trichloroethane	U		0.000883	0.00250
Trichloroethene	U		0.000400	0.00100
Trichlorofluoromethane	U		0.000500	0.00250
1,2,3-Trichloropropane	U		0.00510	0.0125
1,2,3-Trimethylbenzene	U		0.00115	0.00500
1,2,4-Trimethylbenzene	U		0.00116	0.00500
1,3,5-Trimethylbenzene	U		0.00108	0.00500
Vinyl chloride	U		0.000683	0.00250
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	109			80.0-120
(S) Dibromofluoromethane	101			74.0-131

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3308501-1 05/09/18 11:20 • (LCSD) R3308501-2 05/09/18 11:38										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.625	0.956	0.939	153	150	11.0-160			1.73	23
Acrylonitrile	0.625	0.677	0.674	108	108	61.0-143			0.456	20
Benzene	0.125	0.128	0.129	103	104	71.0-124			0.703	20
Bromobenzene	0.125	0.139	0.140	111	112	78.0-120			0.234	20
Bromodichloromethane	0.125	0.123	0.121	98.1	97.0	75.0-120			1.07	20

(S) 4-Bromofluorobenzene 114

64.0-132

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L991462-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3308501-1 05/09/18 11:20 • (LCSD) R3308501-2 05/09/18 11:38

(LCS) R3308501-1 05/09/18	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	<u> </u>		%	%
omoform	0.125	0.113	0.111	90.1	88.7	65.0-133			1.62	20
romomethane	0.125	0.134	0.133	107	106	26.0-160			1.03	20
Butylbenzene	0.125	0.121	0.124	97.0	99.3	73.0-126			2.36	20
c-Butylbenzene	0.125	0.123	0.125	98.3	99.8	75.0-121			1.56	20
t-Butylbenzene	0.125	0.122	0.124	97.6	98.8	74.0-122			1.31	20
arbon tetrachloride	0.125	0.128	0.123	102	98.3	66.0-123			3.79	20
llorobenzene	0.125	0.113	0.112	90.5	89.9	79.0-121			0.754	20
hlorodibromomethane	0.125	0.112	0.115	89.3	92.3	74.0-128			3.31	20
Chloroethane	0.125	0.152	0.152	122	122	51.0-147			0.212	20
hloroform	0.125	0.126	0.121	101	97.1	73.0-123			4.08	20
hloromethane	0.125	0.154	0.147	123	117	51.0-138			4.67	20
-Chlorotoluene	0.125	0.120	0.128	96.2	103	72.0-124			6.57	20
-Chlorotoluene	0.125	0.121	0.121	97.1	97.2	78.0-120			0.0708	20
,2-Dibromo-3-Chloropropane	0.125	0.117	0.108	93.2	86.0	65.0-126			8.07	20
2-Dibromoethane	0.125	0.109	0.109	87.5	87.0	78.0-122			0.563	20
Dibromomethane	0.125	0.131	0.130	105	104	79.0-120			0.457	20
2-Dichlorobenzene	0.125	0.120	0.120	95.9	95.7	80.0-120			0.245	20
3-Dichlorobenzene	0.125	0.120	0.117	95.7	93.7	72.0-123			2.09	20
4-Dichlorobenzene	0.125	0.114	0.114	91.2	91.5	77.0-120			0.396	20
ichlorodifluoromethane	0.125	0.144	0.147	115	117	49.0-155			2.01	20
Dichloroethane	0.125	0.132	0.128	105	103	70.0-128			2.50	20
-Dichloroethane	0.125	0.124	0.126	99.3	101	69.0-128			1.24	20
-Dichloroethene	0.125	0.135	0.133	108	107	63.0-131			1.53	20
is-1,2-Dichloroethene	0.125	0.133	0.132	106	105	74.0-123			0.746	20
rans-1,2-Dichloroethene	0.125	0.122	0.118	97.6	94.5	72.0-122			3.23	20
2-Dichloropropane	0.125	0.133	0.136	106	109	75.0-126			2.87	20
1-Dichloropropene	0.125	0.139	0.137	111	110	72.0-130			1.31	20
,3-Dichloropropane	0.125	0.114	0.116	90.9	92.5	80.0-121			1.71	20
s-1,3-Dichloropropene	0.125	0.129	0.127	103	102	80.0-125			1.31	20
ans-1,3-Dichloropropene	0.125	0.122	0.122	97.3	97.8	75.0-129			0.494	20
,2-Dichloropropane	0.125	0.133	0.136	107	109	60.0-129			2.23	20
Di-isopropyl ether	0.125	0.146	0.146	116	117	62.0-133			0.265	20
thylbenzene	0.125	0.116	0.120	93.2	96.3	77.0-120			3.27	20
Hexachloro-1,3-butadiene	0.125	0.116	0.129	92.5	103	68.0-128			11.1	20
sopropylbenzene	0.125	0.118	0.119	94.4	95.0	75.0-120			0.677	20
p-Isopropyltoluene	0.125	0.111	0.118	89.1	94.2	74.0-125			5.50	20
2-Butanone (MEK)	0.625	0.740	0.727	118	116	37.0-159			1.78	21.3
Methylene Chloride	0.125	0.143	0.143	115	114	67.0-123			0.340	20
I-Methyl-2-pentanone (MIBK)	0.625	0.605	0.603	96.8	96.4	60.0-144			0.381	20
Methyl tert-butyl ether	0.125	0.133	0.133	107	107	66.0-125			0.197	20

Terracon Consultants, Inc - Longmont, CO

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L991462-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3308501-1 05/09/18 11:20 • (LCSD) R3308501-2 05/09/18 11:38

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Naphthalene	0.125	0.108	0.114	86.4	91.1	64.0-125			5.27	20
n-Propylbenzene	0.125	0.122	0.122	98.0	97.6	78.0-120			0.353	20
Styrene	0.125	0.117	0.117	93.6	93.4	78.0-124			0.251	20
1,1,1,2-Tetrachloroethane	0.125	0.117	0.120	93.9	96.2	74.0-124			2.40	20
1,1,2,2-Tetrachloroethane	0.125	0.129	0.123	103	98.0	73.0-120			4.75	20
Tetrachloroethene	0.125	0.109	0.108	87.3	86.6	70.0-127			0.750	20
Toluene	0.125	0.114	0.113	91.5	90.1	70.0-120			1.51	20
1,1,2-Trichlorotrifluoroethane	0.125	0.134	0.136	107	109	64.0-135			1.34	20
1,2,3-Trichlorobenzene	0.125	0.107	0.118	85.8	94.3	68.0-126			9.44	20
1,2,4-Trichlorobenzene	0.125	0.113	0.120	90.7	96.2	70.0-127			5.93	20
1,1,1-Trichloroethane	0.125	0.128	0.125	102	100	69.0-125			1.92	20
1,1,2-Trichloroethane	0.125	0.114	0.116	91.4	92.9	78.0-120			1.70	20
Trichloroethene	0.125	0.115	0.119	92.1	95.2	79.0-120			3.26	20
Trichlorofluoromethane	0.125	0.148	0.145	118	116	59.0-136			2.06	20
1,2,3-Trichloropropane	0.125	0.124	0.130	99.3	104	73.0-124			4.73	20
1,2,3-Trimethylbenzene	0.125	0.118	0.121	94.7	97.1	76.0-120			2.46	20
1,2,4-Trimethylbenzene	0.125	0.117	0.118	93.5	94.2	75.0-120			0.733	20
1,3,5-Trimethylbenzene	0.125	0.122	0.122	97.5	97.2	75.0-120			0.343	20
Vinyl chloride	0.125	0.149	0.151	119	121	63.0-134			1.52	20

77.0-120

80.0-120

74.0-131

64.0-132

0.375

0.331

0.329

88.3

108

114

112

87.7

108

112

113

0.606

20

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 8015

L991462-01,02,03,04

Method Blank (MB)

(MB) R3308766-1 05/09	9/18 22:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenvl	65.1			18.0-148

Method Blank (MB)

(MB) R3308900-1 05/10/	/18 23:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	77.2			18.0-148

(LCS) R3308766-2 05/10/18 02:18 • (LCSD) R3308766-3 05/10/18 02:31

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	50.0	22.3	28.4	44.7	56.8	50.0-150	<u>J4</u>	<u>J3</u>	23.9	20
(S) o-Terphenyl				49.8	60.8	18.0-148				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) P3308000 2 05/11/18 00:11 - (I CSD) P3308000 3 05/11/18 00:24

(LC3) K3306900-2 03/1	2C3) R3306300-2 03/11/16 00.11 • (LC3D) R3306300-3 03/11/16 00.24									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	
C10-C28 Diesel Range	50.0	34.2	39.9	68.4	79.9	50.0-150		15.4	20	
(S) o-Terphenyl				62.0	71.6	18.0-148				

Terracon Consultants, Inc - Longmont, CO

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

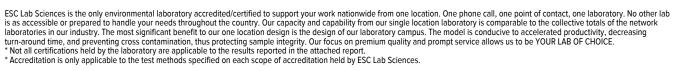
The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

, to bre viations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J	The identification of the analyte is acceptable; the reported value is an estimate.	
J3	The associated batch QC was outside the established quality control range for precision.	
J4	The associated batch QC was outside the established quality control range for accuracy.	



ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LA000356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Terracon Consultants, I	inc					Billing Info	rmation:		T			Analy	vsis / C	ontainer /	Preservative		Chain of Cus	tody	Page of
1242 Bramwood Place Longmont, Colorado 80		Í				SAME	SAME										*	E	SC
Report to: Mike Skridulis					_	Email To:	ridulis@terra	con com									12065 Lebano Mount Juliet, 1	er Rd	
Project Wertman #1					-	mike.sk	City/State Longmont, CO						33.5				Phone: 615-75 Phone: 800-76 Fax: 615-758-5	58-5858 57-5859	
Phone: 303-454-5249	The second second	nt Proje 17704			_		Lab Project #						50,400				L#	199	11462
Collected by (print): Drew Stephens	Site	/Facility	/ ID #	-			P.O.#	P.O. #			115						T Acctnum:	10-	
Collected by (signature):				MUST F		Notified)	Quote #			09	0 - 801						Template:	Template:	
Immediately Packed on Ice N YX		Next Two I	Day	1	Day 0 Da	(Rad Only) y (Rad Only)	Date Reso	Date Results Needed ANDARD Date Time No. of Cntrs O/Q/D O/Q/S Of Cntrs			- G/D/				344		TSR:		
Sample ID	Con	np/Gra	ь	Matrix	•	Depth	Date	Time	Cntrs	ntrs NOC.				Shipped Via: Remarks Sample # (lab only)					
6B-01	Gra	b [S	s	7	10-11	5/1/18	0830	2	×	×				8.5				- 01
B-02	Gra	b [·S	S	+	8-11	5/1/18	0950	2	×	×								102
SB-03	Gra	b [· S	s [*	9-10	5/1/18	0910	2	X	X	100	100	ink.				9	_03
SB-04	Gra	b [s	s [*	8-10	5/1/18	1120	2	X	×								-04
	\vdash		+		_													- 15	
			1				= 250	1,145	2										
	-	_	+	10					-			1870			10000				
	107-	1,546	-	2.2	0			14000	-									- 8	
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay	Rem	arks:	43	361	6	930	2605	1	1	Janes 1			рН _	т	emp		Sample Receipt I Present/Int ned/Accurate:		KMat NP _Y _N
VW - WasteWater VW - Drinking Water VT - Other		ples ret PS		d via:	our	ier	Flow Other Tracking # 43616930 7605				Correct Suffici	arrive intact bottles used ent volume ser If Appli	nti	Z _ 1					
Relinquished by : (Signature)			10	Date:	11	/	me: Re	ceived by: (Signa	ture)	0.	00	Trip	Blank	Received:	Yes / No HCL / MeoH TBR		o Headspace: ation Correct,	/Check	ed: Y N
telinquished by : (Signature)			C	Date:	1	Ti	me: Re	ceived by: (Signa	ture)	/	- 5	Tem	ng; M	, °C	Bottles Received:	If preserv	ation required by	y Login:	Date/Time
telinquished by : (Signature)			C	Date:		T	me: Re	ceived for lab by	(Signat	(fe)		Date	e:	-	Time: 0845	Hold:			Condition: NCF / OR

ANALYTICAL REPORT

Terracon Consultants, Inc - Longmont, CO

Sample Delivery Group: L994060
Samples Received: 05/16/2018
Project Number: 22177047

Project Number: 22177047

Description: Wertman #1

Report To: Michael Skridulis

1242 Bramwood Place

Longmont, CO 80501

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reporduced, except in full, without written approval of the lateratory. Where applicable, sampling conducted by SCIS performed per guidance provided in laberatory sandaird operating procedures. 96/392, 56/392, 46/3934.

29

1
2
3
4
5
5
8
11
14
17
17
18
19
21
22
23
27
28

Sc: Sample Chain of Custody

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received date/time
MW-01 L994060-01 GW			Drew Stephens	05/15/18 14:30	05/16/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 2320 B-2011	WG1112014	1	05/17/18 13:49	05/17/18 13:49	GB
Wet Chemistry by Method 4500CO2 D-2011	WG1112014	1	05/17/18 13:49	05/17/18 13:49	GB
Wet Chemistry by Method 9056A	WG1111964	1	05/16/18 14:08	05/16/18 14:08	MAJ
Wet Chemistry by Method 9056A	WG1111964	10	05/17/18 12:02	05/17/18 12:02	MAJ
Metals (ICP) by Method 6010B	WG1112052	1	05/16/18 15:57	05/17/18 00:45	TRB
Volatile Organic Compounds (GC) by Method RSK175	WG1113034	1	05/18/18 10:18	05/18/18 10:18	BG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1112138	1	05/16/18 15:58	05/16/18 15:58	TJJ
			Collected by	Collected date/time	Received date/time
MW-02 L994060-02 GW			Drew Stephens	05/15/18 15:00	05/16/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 2320 B-2011	WG1112014	1	05/17/18 13:57	05/17/18 13:57	GB
Wet Chemistry by Method 4500CO2 D-2011	WG1112014	1	05/17/18 13:57	05/17/18 13:57	GB
Wet Chemistry by Method 9056A	WG1111964	1	05/16/18 14:24	05/16/18 14:24	MAJ
Wet Chemistry by Method 9056A	WG1111964	10	05/17/18 12:19	05/17/18 12:19	MAJ
Metals (ICP) by Method 6010B	WG1112052	1	05/16/18 15:57	05/17/18 00:47	TRB
Volatile Organic Compounds (GC) by Method RSK175	WG1113034	1	05/18/18 10:22	05/18/18 10:22	BG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1112138	1	05/16/18 16:18	05/16/18 16:18	TJJ
			Collected by	Collected date/time	Received date/time
MW-03 L994060-03 GW			Drew Stephens	05/15/18 14:30	05/16/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 2320 B-2011	WG1112014	1	05/17/18 15:19	05/17/18 15:19	GB
Wet Chemistry by Method 4500CO2 D-2011	WG1112014	1	05/17/18 15:19	05/17/18 15:19	GB

SAMPLE SUMMARY

Sr

Volatile Organic Compounds (GC) by Method RSK175

Volatile Organic Compounds (GC/MS) by Method 8260B

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Metals (ICP) by Method 6010B

Metals (ICP) by Method 6010B

Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 2320 B-2011	WG1112014	1	05/17/18 15:28	05/17/18 15:28	GB
Wet Chemistry by Method 4500CO2 D-2011	WG1112014	1	05/17/18 15:28	05/17/18 15:28	GB
Wet Chemistry by Method 9056A	WG1111964	1	05/16/18 14:57	05/16/18 14:57	MAJ
Wet Chemistry by Method 9056A	WG1111964	10	05/17/18 12:52	05/17/18 12:52	MAJ
Metals (ICP) by Method 6010B	WG1112052	1	05/16/18 15:57	05/17/18 00:52	TRB
Volatile Organic Compounds (GC) by Method RSK175	WG1113034	1	05/18/18 10:27	05/18/18 10:27	BG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1112138	1	05/16/18 16:59	05/16/18 16:59	TJJ

WG1111964

WG1111964

WG1112052

WG1112052

WG1113034

WG1112138

1

10

1

5

1

05/16/18 14:41

05/17/18 12:35

05/16/18 15:57

05/16/18 15:57

05/18/18 10:24

05/16/18 16:38

Collected by

Drew Stephens

05/16/18 14:41

05/17/18 12:35

05/17/18 00:50

05/17/18 10:25

05/18/18 10:24

05/16/18 16:38

05/15/18 16:00

Collected date/time

MAJ

MAJ

TRB

TRB

BG

TJJ

Received date/time 05/16/18 08:45

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Technical Service Representative

lapline R Richards

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	401		20.0	1	05/17/2018 13:49	WG1112014

L994060-01 WG1112014: Endpoint pH 4.5 HEADSPACE

³Ss

Wet Chemistry by Method 4500CO2 D-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Free Carbon Dioxide	ND	<u>T8</u>	20.0	1	05/17/2018 13:49	WG1112014

Sample Narrative:

L994060-01 WG1112014: Endpoint pH 4.5 HEADSPACE

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	05/16/2018 14:08	WG1111964
Chloride	97.2		1.00	1	05/16/2018 14:08	WG1111964
Nitrate as (N)	3.92		0.100	1	05/16/2018 14:08	WG1111964
Nitrite as (N)	0.218		0.100	1	05/16/2018 14:08	WG1111964
Sulfate	529		50.0	10	05/17/2018 12:02	<u>WG1111964</u>

⁸Al

Gl

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	270		1.00	1	05/17/2018 00:45	WG1112052
Iron	222		0.100	1	05/17/2018 00:45	WG1112052
Magnesium	159		1.00	1	05/17/2018 00:45	WG1112052
Potassium	39.8		1.00	1	05/17/2018 00:45	WG1112052
Sodium	134		1.00	1	05/17/2018 00:45	WG1112052
Strontium	4.22		0.0100	1	05/17/2018 00:45	WG1112052

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Methane	0.0101		0.0100	1	05/18/2018 10:18	WG1113034
Ethane	ND		0.0130	1	05/18/2018 10:18	WG1113034
Ethene	ND		0.0130	1	05/18/2018 10:18	WG1113034

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Acetone	0.128		0.0500	1	05/16/2018 15:58	WG1112138
Acrolein	ND		0.0500	1	05/16/2018 15:58	WG1112138
Acrylonitrile	ND		0.0100	1	05/16/2018 15:58	WG1112138
Benzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Bromobenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Bromodichloromethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Bromoform	ND		0.00100	1	05/16/2018 15:58	WG1112138
Bromomethane	ND		0.00500	1	05/16/2018 15:58	WG1112138
n-Butylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
sec-Butylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
tert-Butylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Carbon tetrachloride	ND		0.00100	1	05/16/2018 15:58	WG1112138
Chlorobenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Chlorodibromomethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Chloroethane	ND		0.00500	1	05/16/2018 15:58	WG1112138
Chloroform	ND		0.00500	1	05/16/2018 15:58	<u>WG1112138</u>
Chloromethane	ND		0.00250	1	05/16/2018 15:58	WG1112138
2-Chlorotoluene	ND		0.00100	1	05/16/2018 15:58	WG1112138
4-Chlorotoluene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	05/16/2018 15:58	WG1112138
1,2-Dibromoethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Dibromomethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2-Dichlorobenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,3-Dichlorobenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,4-Dichlorobenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Dichlorodifluoromethane	ND		0.00500	1	05/16/2018 15:58	WG1112138
1,1-Dichloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2-Dichloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1-Dichloroethene	ND		0.00100	1	05/16/2018 15:58	WG1112138
cis-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 15:58	WG1112138
trans-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2-Dichloropropane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1-Dichloropropene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,3-Dichloropropane	ND		0.00100	1	05/16/2018 15:58	WG1112138
cis-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 15:58	WG1112138
trans-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 15:58	WG1112138
2,2-Dichloropropane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Di-isopropyl ether	ND		0.00100	1	05/16/2018 15:58	WG1112138
Ethylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Hexachloro-1,3-butadiene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Isopropylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
p-lsopropyltoluene	ND		0.00100	1	05/16/2018 15:58	WG1112138
2-Butanone (MEK)	ND		0.0100	1	05/16/2018 15:58	WG1112138
Methylene Chloride	ND		0.00500	1	05/16/2018 15:58	WG1112138
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	05/16/2018 15:58	WG1112138
Methyl tert-butyl ether	ND		0.00100	1	05/16/2018 15:58	WG1112138
Naphthalene	ND	<u>J4</u>	0.00500	1	05/16/2018 15:58	WG1112138
n-Propylbenzene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Styrene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1,1,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1,2,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Tetrachloroethene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Toluene	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2,3-Trichlorobenzene	ND	<u>J4</u>	0.00100	1	05/16/2018 15:58	WG1112138
1,2,4-Trichlorobenzene	ND	<u>54</u>	0.00100	1	05/16/2018 15:58	WG1112138
1,1,1-Trichloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,1,2-Trichloroethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
Trichloroethene	ND		0.00100	1	05/16/2018 15:58	WG1112138
Trichlorofluoromethane	ND		0.00100	1	05/16/2018 15:58	WG1112138
1,2,3-Trichloropropane	ND ND		0.00300	1	05/16/2018 15:58	WG1112138
	ND ND					
1,2,4-Trimethylbenzene			0.00100	1	05/16/2018 15:58	WG1112138
1,2,3-Trimethylbenzene	ND ND		0.00100	1	05/16/2018 15:58	WG1112138
1,3,5-Trimethylbenzene	ND ND		0.00100	1	05/16/2018 15:58	WG1112138
Virlance Total	ND		0.00100	1	05/16/2018 15:58	WG1112138
Xylenes, Total	ND 105		0.00300	1	05/16/2018 15:58	WG1112138
(S) Toluene-d8	105		80.0-120		05/16/2018 15:58	<u>WG1112138</u>

Ss

Cn

GI

Sc

MW-01

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Volatile Organic Compounds (GC/MS) by Method 8260B

Totalis Cigamo Composition (Como, S) mestica Caracteristics										
	Result	Qualifier	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l		date / time					
(S) Dibromofluoromethane	90.4		76.0-123		05/16/2018 15:58	WG1112138				
(S) 4-Bromofluorobenzene	91.6		80.0-120		05/16/2018 15:58	WG1112138				

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 15:00

L994060

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	423		20.0	1	05/17/2018 13:57	WG1112014

Sample Narrative:

L994060-02 WG1112014: Endpoint pH 4.5 HEADSPACE

³Ss

Wet Chemistry by Method 4500CO2 D-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Free Carbon Dioxide	ND	T8	20.0	1	05/17/2018 13:57	WG1112014

Sample Narrative:

L994060-02 WG1112014: Endpoint pH 4.5 HEADSPACE

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	05/16/2018 14:24	WG1111964
Chloride	83.8		1.00	1	05/16/2018 14:24	WG1111964
Nitrate as (N)	4.11		0.100	1	05/16/2018 14:24	WG1111964
Nitrite as (N)	ND		0.100	1	05/16/2018 14:24	WG1111964
Sulfate	492		50.0	10	05/17/2018 12:19	<u>WG1111964</u>

Gl

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	161		1.00	1	05/17/2018 00:47	WG1112052
Iron	42.7		0.100	1	05/17/2018 00:47	WG1112052
Magnesium	119		1.00	1	05/17/2018 00:47	WG1112052
Potassium	11.9		1.00	1	05/17/2018 00:47	WG1112052
Sodium	136		1.00	1	05/17/2018 00:47	WG1112052
Strontium	3.02		0.0100	1	05/17/2018 00:47	WG1112052

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Methane	ND		0.0100	1	05/18/2018 10:22	WG1113034
Ethane	ND		0.0130	1	05/18/2018 10:22	WG1113034
Ethene	ND		0.0130	1	05/18/2018 10:22	WG1113034

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	_
Acetone	ND		0.0500	1	05/16/2018 16:18	WG1112138
Acrolein	ND		0.0500	1	05/16/2018 16:18	WG1112138
Acrylonitrile	ND		0.0100	1	05/16/2018 16:18	WG1112138
Benzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Bromobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Bromodichloromethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
Bromoform	ND		0.00100	1	05/16/2018 16:18	WG1112138
Bromomethane	ND		0.00500	1	05/16/2018 16:18	WG1112138
n-Butylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
sec-Butylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
tert-Butylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 15:00

L994060

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	_
Carbon tetrachloride	ND		0.00100	1	05/16/2018 16:18	WG1112138
Chlorobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Chlorodibromomethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
Chloroethane	ND		0.00500	1	05/16/2018 16:18	WG1112138
Chloroform	ND		0.00500	1	05/16/2018 16:18	WG1112138
Chloromethane	ND		0.00250	1	05/16/2018 16:18	WG1112138
2-Chlorotoluene	ND		0.00100	1	05/16/2018 16:18	WG1112138
4-Chlorotoluene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	05/16/2018 16:18	WG1112138
1,2-Dibromoethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
Dibromomethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,2-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,3-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,4-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Dichlorodifluoromethane	ND		0.00500	1	05/16/2018 16:18	WG1112138
1,1-Dichloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,2-Dichloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1-Dichloroethene	ND		0.00100	1	05/16/2018 16:18	WG1112138
cis-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 16:18	WG1112138
trans-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,2-Dichloropropane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1-Dichloropropene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,3-Dichloropropane	ND		0.00100	1	05/16/2018 16:18	WG1112138
cis-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
trans-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
2,2-Dichloropropane	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Di-isopropyl ether	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Ethylbenzene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Hexachloro-1,3-butadiene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Isopropylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
p-Isopropyltoluene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
2-Butanone (MEK)	ND		0.0100	1	05/16/2018 16:18	<u>WG1112138</u>
Methylene Chloride	ND		0.00500	1	05/16/2018 16:18	<u>WG1112138</u>
4-Methyl-2-pentanone (MIBK)	ND		0.0100	1	05/16/2018 16:18	<u>WG1112138</u>
Methyl tert-butyl ether	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Naphthalene	ND	<u>J4</u>	0.00500	1	05/16/2018 16:18	<u>WG1112138</u>
n-Propylbenzene	ND		0.00100	1	05/16/2018 16:18	<u>WG1112138</u>
Styrene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1,1,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1,2,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
Tetrachloroethene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Toluene	ND	14	0.00100	1	05/16/2018 16:18	WG1112138
1,2,3-Trichlorobenzene	ND	<u>J4</u>	0.00100	1	05/16/2018 16:18	WG1112138
1,2,4-Trichlorobenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1,1-Trichloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,1,2-Trichloroethane	ND		0.00100	1	05/16/2018 16:18	WG1112138
Trichloroethene Trichloroethene	ND ND		0.00100	1	05/16/2018 16:18	WG1112138
Trichlorofluoromethane	ND ND		0.00500	1	05/16/2018 16:18	WG1112138 WG1112128
1,2,3-Trichloropropane	ND ND		0.00250	1	05/16/2018 16:18	WG1112138
1,2,4-Trimethylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
1,2,3-Trimethylbenzene	ND ND		0.00100	1	05/16/2018 16:18	WG1112138
1,3,5-Trimethylbenzene	ND		0.00100	1	05/16/2018 16:18	WG1112138
Vinyl chloride	ND ND		0.00100 0.00300	1	05/16/2018 16:18	WG1112138
Xylenes, Total	ND 102			1	05/16/2018 16:18	WG1112138 WG1112128
(S) Toluene-d8	103		80.0-120		05/16/2018 16:18	WG1112138

Ss

Cn

[°]Qc

GI

Sc

MW-02

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 15:00

Volatile Organic Compounds (GC/MS) by Method 8260B

Totaline original composition (common of months and of the composition									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l		date / time				
(S) Dibromofluoromethane	86.2		76.0-123		05/16/2018 16:18	WG1112138			
(S) 4-Bromofluorobenzene	94.2		80.0-120		05/16/2018 16:18	WG1112138			

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	409		20.0	1	05/17/2018 15:19	WG1112014

Sample Narrative:

L994060-03 WG1112014: Endpoint pH 4.5 HEADSPACE

Ss

Wet Chemistry by Method 4500CO2 D-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Free Carbon Dioxide	ND	<u>T8</u>	20.0	1	05/17/2018 15:19	WG1112014

Sample Narrative:

L994060-03 WG1112014: Endpoint pH 4.5 HEADSPACE

СQс

Gl

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	05/16/2018 14:41	WG1111964
Chloride	96.4		1.00	1	05/16/2018 14:41	WG1111964
Nitrate as (N)	5.46		0.100	1	05/16/2018 14:41	WG1111964
Nitrite as (N)	ND		0.100	1	05/16/2018 14:41	WG1111964
Sulfate	509		50.0	10	05/17/2018 12:35	<u>WG1111964</u>

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	304		1.00	1	05/17/2018 00:50	WG1112052
Iron	615		0.500	5	05/17/2018 10:25	WG1112052
Magnesium	242		1.00	1	05/17/2018 00:50	WG1112052
Potassium	90.3		1.00	1	05/17/2018 00:50	WG1112052
Sodium	122		1.00	1	05/17/2018 00:50	WG1112052
Strontium	5.53		0.0100	1	05/17/2018 00:50	WG1112052

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Methane	ND		0.0100	1	05/18/2018 10:24	WG1113034
Ethane	ND		0.0130	1	05/18/2018 10:24	WG1113034
Ethene	ND		0.0130	1	05/18/2018 10:24	WG1113034

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Acetone	ND		0.0500	1	05/16/2018 16:38	WG1112138
Acrolein	ND		0.0500	1	05/16/2018 16:38	WG1112138
Acrylonitrile	ND		0.0100	1	05/16/2018 16:38	WG1112138
Benzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Bromobenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Bromodichloromethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
Bromoform	ND		0.00100	1	05/16/2018 16:38	WG1112138
Bromomethane	ND		0.00500	1	05/16/2018 16:38	WG1112138
n-Butylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
sec-Butylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
tert-Butylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138

11 of 30

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Volatile Organic Com					Analysis	Patch
Analyto	Result mg/l	Qualifier	RDL ma/l	Dilution	Analysis date / time	<u>Batch</u>
Analyte			mg/l			Wowann
Carbon tetrachloride	ND		0.00100	1	05/16/2018 16:38	WG1112138
Chlorobenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Chlorodibromomethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
Chloroethane	ND		0.00500	1	05/16/2018 16:38	WG1112138
Chloroform	ND		0.00500	1	05/16/2018 16:38	<u>WG1112138</u>
Chloromethane	ND		0.00250	1	05/16/2018 16:38	<u>WG1112138</u>
2-Chlorotoluene	ND		0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
4-Chlorotoluene	ND		0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
1,2-Dibromo-3-Chloropropane	ND		0.00500	1	05/16/2018 16:38	<u>WG1112138</u>
1,2-Dibromoethane	ND		0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
Dibromomethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,2-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,3-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,4-Dichlorobenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Dichlorodifluoromethane	ND		0.00500	1	05/16/2018 16:38	WG1112138
1,1-Dichloroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,2-Dichloroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,1-Dichloroethene	ND		0.00100	1	05/16/2018 16:38	WG1112138
cis-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 16:38	WG1112138
trans-1,2-Dichloroethene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,2-Dichloropropane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,1-Dichloropropene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,3-Dichloropropane	ND		0.00100	1	05/16/2018 16:38	WG1112138
cis-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 16:38	WG1112138
trans-1,3-Dichloropropene	ND		0.00100	1	05/16/2018 16:38	WG1112138
2,2-Dichloropropane	ND		0.00100	1	05/16/2018 16:38	WG1112138
Di-isopropyl ether	ND		0.00100	1	05/16/2018 16:38	WG1112138
Ethylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Hexachloro-1,3-butadiene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Isopropylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
p-Isopropyltoluene	ND		0.00100	1	05/16/2018 16:38	WG1112138
2-Butanone (MEK)	ND		0.00100	1	05/16/2018 16:38	WG1112138
Methylene Chloride	ND		0.00500	1	05/16/2018 16:38	WG1112138
•	ND		0.00300	1	05/16/2018 16:38	WG1112138
4-Methyl-2-pentanone (MIBK) Methyl tert-butyl ether	ND		0.0100	1		
, ,		14		1	05/16/2018 16:38	WG1112138
Naphthalene	ND	<u>J4</u>	0.00500	1	05/16/2018 16:38	WG1112138
n-Propylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Styrene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,1,1,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,1,2,2-Tetrachloroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,1,2-Trichlorotrifluoroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
Tetrachloroethene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Toluene	ND		0.00100	1	05/16/2018 16:38	WG1112138
l,2,3-Trichlorobenzene	ND	<u>J4</u>	0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
I,2,4-Trichlorobenzene	ND		0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
I,1,1-Trichloroethane	ND		0.00100	1	05/16/2018 16:38	<u>WG1112138</u>
I,1,2-Trichloroethane	ND		0.00100	1	05/16/2018 16:38	WG1112138
Trichloroethene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Trichlorofluoromethane	ND		0.00500	1	05/16/2018 16:38	<u>WG1112138</u>
1,2,3-Trichloropropane	ND		0.00250	1	05/16/2018 16:38	WG1112138
1,2,4-Trimethylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,2,3-Trimethylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
1,3,5-Trimethylbenzene	ND		0.00100	1	05/16/2018 16:38	WG1112138
Vinyl chlorido	ND		0.00100	1	05/16/2019 16:39	WC1112138

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

ND

ND

109

0.00100

0.00300

80.0-120

05/16/2018 16:38

05/16/2018 16:38

05/16/2018 16:38

WG1112138

WG1112138

WG1112138

MW-03

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 14:30

Volatile Organic Compounds (GC/MS) by Method 8260B

3	1 (-	-/ - /					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	-
Analyte	mg/l		mg/l		date / time		
(S) Dibromofluoromethane	89.9		76.0-123		05/16/2018 16:38	WG1112138	
(S) 4-Bromofluorobenzene	88.6		80.0-120		05/16/2018 16:38	WG1112138	

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 16:00

L994060

Wet Chemistry by Method 2320 B-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	418		20.0	1	05/17/2018 15:28	WG1112014

Sample Narrative:

L994060-04 WG1112014: Endpoint pH 4.5 HEADSPACE

³Ss

Wet Chemistry by Method 4500CO2 D-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Free Carbon Dioxide	ND	<u>T8</u>	20.0	1	05/17/2018 15:28	WG1112014

Sample Narrative:

L994060-04 WG1112014: Endpoint pH 4.5 HEADSPACE

СQс

Gl

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Bromide	ND		1.00	1	05/16/2018 14:57	WG1111964
Chloride	86.5		1.00	1	05/16/2018 14:57	WG1111964
Nitrate as (N)	4.22		0.100	1	05/16/2018 14:57	WG1111964
Nitrite as (N)	ND		0.100	1	05/16/2018 14:57	WG1111964
Sulfate	449		50.0	10	05/17/2018 12:52	WG1111964

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l		date / time	
Calcium	156		1.00	1	05/17/2018 00:52	WG1112052
Iron	80.4		0.100	1	05/17/2018 00:52	WG1112052
Magnesium	136		1.00	1	05/17/2018 00:52	WG1112052
Potassium	12.6		1.00	1	05/17/2018 00:52	WG1112052
Sodium	116		1.00	1	05/17/2018 00:52	WG1112052
Strontium	3.42		0.0100	1	05/17/2018 00:52	WG1112052

Volatile Organic Compounds (GC) by Method RSK175

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Methane	ND		0.0100	1	05/18/2018 10:27	WG1113034
Ethane	ND		0.0130	1	05/18/2018 10:27	WG1113034
Ethene	ND		0.0130	1	05/18/2018 10:27	WG1113034

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	_
Acetone	ND		0.0500	1	05/16/2018 16:59	WG1112138
Acrolein	ND		0.0500	1	05/16/2018 16:59	WG1112138
Acrylonitrile	ND		0.0100	1	05/16/2018 16:59	WG1112138
Benzene	ND		0.00100	1	05/16/2018 16:59	WG1112138
Bromobenzene	ND		0.00100	1	05/16/2018 16:59	WG1112138
Bromodichloromethane	ND		0.00100	1	05/16/2018 16:59	WG1112138
Bromoform	ND		0.00100	1	05/16/2018 16:59	WG1112138
Bromomethane	ND		0.00500	1	05/16/2018 16:59	WG1112138
n-Butylbenzene	ND		0.00100	1	05/16/2018 16:59	WG1112138
sec-Butylbenzene	ND		0.00100	1	05/16/2018 16:59	WG1112138
tert-Butylbenzene	ND		0.00100	1	05/16/2018 16:59	WG1112138

SAM

Collected date/time: 05/15/18 16:00

Volatile Organic Compounds (GC/MS) by Method 8260B

1PLE RESULTS - 04	ONE LAB. NATIONWI
L994060	

WG1112138

WG1112138

WG1112138 WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138 WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

WG1112138

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

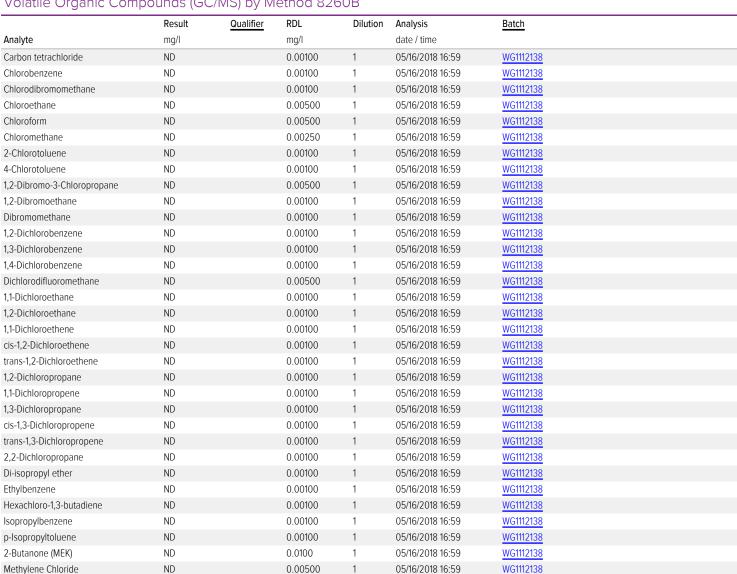
05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59


05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

05/16/2018 16:59

ND

102

<u>J4</u>

<u>J4</u>

4-Methyl-2-pentanone (MIBK)

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,2-Trichlorotrifluoroethane

Naphthalene

Styrene

Toluene

n-Propylbenzene

Tetrachloroethene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,2,3-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

Trichloroethene

0.0100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00250

0.00100

0.00100

0.00100

0.00100

0.00300

80.0-120

1

1

1

1

1

1

MW-04

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 16:00

L994060

Volatile Organic Compounds (GC/MS) by Method 8260B

Tarana argania aanipa						
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
(S) Dibromofluoromethane	87.9		76.0-123		05/16/2018 16:59	WG1112138
(S) 4-Bromofluorobenzene	91.6		80.0-120		05/16/2018 16:59	WG1112138

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2320 B-2011

L994060-01,02,03,04

L993811-01 Original Sample (OS) • Duplicate (DUP)

(OS) L993811-01 05/17/18 12:50 • (DUP) R3310888-1 05/17/18 12:58

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/I	mg/l		%		%
Alkalinity	487	493	1	1.29		20

Sample Narrative:

OS: Endpoint pH 4.5 DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I, CS) P3310888-3, 05/17/18 15:09 • (I, CSD) P3310888-6, 05/17/18 17:50

(LCS) RSS10000-S 05/1//1	10 15.09 • (LCSL) K331U000-0	05/1//16 17.50)						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Alkalinity	100	104	104	104	104	85.0-115			0.138	20

Sample Narrative:

LCS: Endpoint pH 4.5

LCSD: Endpoint pH 4.5

Sample Narrative: OS: Endpoint pH 4.5 DUP: Endpoint pH 4.5

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500CO2 D-2011

L994060-01,02,03,04

L993811-01 Original Sample (OS) • Duplicate (DUP)

(OS) L993811-01 05/17/18 12:50 • (DUP) R3310888-2 05/17/18 12:58

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Free Carbon Dioxide	ND	ND	1	0.000		20

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L994060-01,02,03,04

Method Blank (MB)

(MB) R3310376-1	05/16/18 09:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Bromide	U		0.0790	1.00
Chloride	0.157	<u>J</u>	0.0519	1.00
Nitrate	U		0.0227	0.100
Nitrite	U		0.0277	0.100
Sulfate	U		0.0774	5.00

(OS) 1 993808-02 05/16/18 10:30 • (DLIP) P3310376-4 05/16/18 10:47

(OS) L993808-02 05/16/1	18 10:30 • (DUP)	R3310376-4	05/16/18 10):47		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	U	0.000	10	0.000		15
Nitrate	63.7	63.1	10	1.06		15
Nitrite	0.309	0.288	10	7.27	<u>J</u>	15
Sulfate	2.79	1.95	10	35.4	J P1	15

L994158-05 Original Sample (OS) • Duplicate (DUP)

(OS) L994158-05 05/16/18 17:58 • (DUP) R3310376-7 05/16/18 18:14

, ,	, ,					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	ND	0.501	1	0.000		15
Chloride	47.0	47.5	1	1.01		15
Nitrate	ND	0.000	1	0.000		15
Nitrite	ND	0.000	1	0.000		15
Sulfate	21.6	21.7	1	0.328		15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3310376-2 05/16/	/18 09:19 • (LCSE	D) R3310376-3	05/16/18 09:3	6						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Bromide	40.0	39.7	39.6	99.3	99.0	80.0-120			0.312	15
Chloride	40.0	39.7	39.5	99.2	98.8	80.0-120			0.346	15
Nitrate	8.00	8.19	8.14	102	102	80.0-120			0.606	15
Nitrite	8.00	7.88	7.89	98.5	98.6	80.0-120			0.123	15
Sulfate	40.0	40.1	39.9	100	99.8	80.0-120			0.402	15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L994060-01,02,03,04

L993808-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L993808-04 05/16/18 11:03 • (MS) R3310376-5 05/16/18 11:19 • (MSD) R3310376-6 05/16/18 11:36

(00) 200000 01 00/10/10	3 11.00 (11.0) 110	30100700000	10/10 11:15 (141)	3D) 113313373	0 00/10/10 11.0	0						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Bromide	50.0	U	48.6	48.6	97.2	97.1	1	80.0-120			0.0391	15
Nitrite	5.00	0.0406	5.02	5.02	99.5	99.5	1	80.0-120			0.0279	15
Sulfato	50.0	10.3	58.1	57 Q	95.6	05.3	1	90 0 120			0.207	15

L994158-06 Original Sample (OS) • Matrix Spike (MS)

(OS) L994158-06 05/16/18 18:31 • (MS) R3310376-8 05/16/18 18:47

. ,	, ,						
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Bromide	50.0	ND	59.7	119	1	80.0-120	
Chloride	50.0	ND	201	402	1	80.0-120	<u>E J5</u>
Nitrate	5.00	ND	5.95	118	1	80.0-120	
Nitrite	5.00	ND	6.12	122	1	80.0-120	<u>J5</u>
Sulfate	50.0	ND	100	200	1	80.0-120	<u>E J5</u>

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L994060-01,02,03,04

Method Blank (MB)

(MB) R3310582-1 C	5/17/18 00:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Calcium	U		0.0463	1.00
Iron	U		0.0141	0.100
Magnesium	U		0.0111	1.00
Potassium	U		0.102	1.00
Sodium	U		0.0985	1.00
Strontium	U		0.00170	0.0100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3310582-2	05/17/18 00:16 • (LCSE	D) R3310582-	3 05/17/18 00:19	9							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Calcium	10.0	10.3	10.2	103	102	80.0-120			1.58	20	
Iron	10.0	10.2	10.0	102	100	80.0-120			1.66	20	
Magnesium	10.0	10.7	10.5	107	105	80.0-120			1.85	20	
Potassium	10.0	10.3	10.2	103	102	80.0-120			1.49	20	
Sodium	10.0	10.2	10.1	102	101	80.0-120			1.19	20	
Strontium	1.00	1.01	0.999	101	99.9	80.0-120			1.39	20	

L994182-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L994182-01 O5/1//18 O0:21 • (MS) R3310582-5	05/1//18 00:26 • (MSD) R3310582-6 05/1//18 00:29
--	--

(00) 200 0.	(33) 133 132 37 337 77 3 332 7 337 77 3 3 3 2 3 3 7 7 7 3 3 3 2 3 3 3 7 7 7 3 3 3 2 3 3 3 7 7 3 3 3 3											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium	10.0	40.9	50.7	50.2	97.9	92.7	1	75.0-125			1.04	20
Iron	10.0	ND	10.2	10.2	102	102	1	75.0-125			0.491	20
Magnesium	10.0	4.33	14.9	14.7	106	104	1	75.0-125			1.66	20
Potassium	10.0	ND	11.3	11.2	104	102	1	75.0-125			1.10	20
Sodium	10.0	5.95	16.1	15.9	102	99.7	1	75.0-125			1.13	20
Strontium	1.00	0.170	1.19	1.17	102	100	1	75.0-125			0.945	20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method RSK175

L994060-01,02,03,04

Method Blank (MB)

Ethane

Ethene

(MB) R3311101-1 05/18/18 09:57

()	MB Result	MB Qualifier	MB MDL
Analyte	mg/l		mg/l
Methane	U		0.00291

L994175-01 Original Sample (OS) • Duplicate (DUP)

(OS) L994175-01 05/18/18 10:29 • (DUP) R3311101-2 05/18/18 10:58

U

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Δ	nalyte	mg/l	mg/l		%		%
Ν	Methane	ND	0.000	1	0.000		20
Е	thane	ND	0.000	1	0.000		20
Е	thene	ND	0.000	1	0.000		20

MB RDL mg/l 0.0100 0.0130

0.0130

0.00407

0.00426

⁸Al

L994182-01 Original Sample (OS) • Duplicate (DUP)

(OS) L994182-01 05/18/18 11:01 • (DUP) R3311101-3 05/18/18 11:26

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Methane	ND	0.000	1	0.000		20
Ethane	ND	0.000	1	0.000		20
Ethene	ND	0.000	1	0.000		20

9

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3311101-4 05/18/18 11:29 • (LCSD) R3311101-5 05/18/18 11:33

(LCS) R3311101-4 05/18/18 11.29 • (LCSD) R3311101-5 05/18/18 11.33										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Methane	0.0678	0.0748	0.0732	110	108	85.0-115			2.14	20
Ethane	0.129	0.114	0.114	88.3	88.5	85.0-115			0.279	20
Ethene	0.127	0.116	0.117	91.4	91.9	85.0-115			0.497	20

05/22/18 11:12

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L994060-01,02,03,04

Method Blank (MB)

Method Blank (MB)				
(MB) R3310793-3 05/16/18 1	14:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
	mg/l		mg/l	mg/l
	U		0.0100	0.0500
	U		0.00887	0.0500
	U		0.00187	0.0100
•	U		0.000331	0.00100
	U		0.000352	0.00100
	U		0.000380	0.00100
	U		0.000360	0.00100
	U		0.000469	0.00500
	U		0.000866	0.00300
·	U		0.000365	0.00100
•	U		0.000399	0.00100
	U		0.000379	0.00100
	U		0.000348	0.00100
	U		0.000327	0.00100
	U		0.000453	0.00500
	U		0.000324	0.00500
	U		0.000276	0.00250
2-Chlorotoluene	U		0.000375	0.00100
4-Chlorotoluene	U		0.000351	0.00100
1,2-Dibromo-3-Chloropropane	U		0.00133	0.00500
1,2-Dibromoethane	U		0.000381	0.00100
Dibromomethane	U		0.000346	0.00100
1,2-Dichlorobenzene	U		0.000349	0.00100
1,3-Dichlorobenzene	U		0.000220	0.00100
	U		0.000274	0.00100
	U		0.000551	0.00500
	U		0.000259	0.00100
	U		0.000361	0.00100
	U		0.000398	0.00100
	U		0.000350	0.00100
	U		0.000200	0.00100
	U		0.000390	0.00100
	U		0.000300	0.00100
				0.00100
	U		0.000366	
	U		0.000418	0.00100
	U		0.000419	0.00100
	U		0.000321	0.00100
	U		0.000320	0.00100
	U		0.000384 0.000256	0.00100 0.00100

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L994060-01,02,03,04

Method Blank (MB)

(S) 4-Bromofluorobenzene

(MB) R3310793-3 05/16/18	3 14:41						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Isopropylbenzene	U		0.000326	0.00100			
p-Isopropyltoluene	U		0.000350	0.00100			
2-Butanone (MEK)	U		0.00393	0.0100			
Methylene Chloride	U		0.00100	0.00500			
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100			
Methyl tert-butyl ether	U		0.000367	0.00100			
Naphthalene	U		0.00100	0.00500			
n-Propylbenzene	U		0.000349	0.00100			
Styrene	U		0.000307	0.00100			
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100			
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100			
Tetrachloroethene	U		0.000372	0.00100			
Toluene	U		0.000412	0.00100			
1,1,2-Trichlorotrifluoroethane	U		0.000303	0.00100			
1,2,3-Trichlorobenzene	U		0.000230	0.00100			
1,2,4-Trichlorobenzene	U		0.000355	0.00100			
1,1,1-Trichloroethane	U		0.000319	0.00100			
1,1,2-Trichloroethane	U		0.000383	0.00100			
Trichloroethene	U		0.000398	0.00100			
Trichlorofluoromethane	U		0.00120	0.00500			
1,2,3-Trichloropropane	U		0.000807	0.00250			
1,2,3-Trimethylbenzene	U		0.000321	0.00100			
1,2,4-Trimethylbenzene	U		0.000373	0.00100			
1,3,5-Trimethylbenzene	U		0.000387	0.00100			
Vinyl chloride	U		0.000259	0.00100			
Xylenes, Total	U		0.00106	0.00300			
(S) Toluene-d8	105			80.0-120			
(S) Dibromofluoromethane	86.3			76.0-123			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

80.0-120

(LCS) R3310793-1 05/16/18 13:05 • (LCSD) R3310793-2 05/16/18 13:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.0998	0.0948	79.8	75.9	10.0-160			5.06	23
Acrolein	0.125	0.0495	0.0408	39.6	32.6	10.0-160			19.3	20
Acrylonitrile	0.125	0.0946	0.0928	75.7	74.2	60.0-142			1.97	20
Benzene	0.0250	0.0219	0.0226	87.7	90.5	69.0-123			3.14	20

1,2-Dibromo-3-Chloropropane

Isopropylbenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

0.0250

0.0250

0.0186

0.0187

0.0239

0.0232

L994060-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3310793-1 05/16/18 13:05 • (LCSD) R3310793-2 05/16/18 13:25

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Bromobenzene	0.0250	0.0220	0.0221	88.2	88.3	79.0-120			0.0947	20
Bromodichloromethane	0.0250	0.0219	0.0218	87.6	87.4	76.0-120			0.246	20
Bromoform	0.0250	0.0249	0.0258	99.8	103	67.0-132			3.47	20
Bromomethane	0.0250	0.0230	0.0240	92.0	96.0	18.0-160			4.23	20
n Dutulbaneana	0.0250	0.0212	0.0225	OF 1	00.1	72.0.120			Г 71	20

64.0-127

75.0-120

n-Butylbenzene 0.0250 0.0213 0.0225 85.1 90.1 72.0-126 5.71 20 0.0250 0.0225 0.0241 89.8 96.4 74.0-121 7.08 20 sec-Butylbenzene 0.0250 0.0220 0.0234 93.7 75.0-122 6.23 20 tert-Butylbenzene 88.1 Carbon tetrachloride 0.0250 0.0200 0.0201 80.1 80.6 63.0-122 0.562 20 0.0278 79.0-121 20 Chlorobenzene 0.0250 0.0265 106 111 4.73

110 20 Chlorodibromomethane 0.0250 0.0269 0.0276 107 75.0-125 2.77 20 Chloroethane 0.0250 0.0220 0.0235 0.88 93.8 47.0-152 6.44 2.82 20 Chloroform 0.0250 0.0218 0.0224 87.3 89.8 72.0-121

Chloromethane 0.0250 0.0176 0.0175 70.3 70.0 48.0-139 0.388 20 94.5 0.159 20 2-Chlorotoluene 0.0250 0.0237 0.0236 94.7 74.0-122 0.0250 0.0234 93.7 79.0-120 2.81 20 4-Chlorotoluene 0.0228 91.1

75.0

0.0261 103 77.0-123 20 1,2-Dibromoethane 0.0250 0.0257 104 1.23 Dibromomethane 0.0250 0.0215 0.0225 86.2 90.0 78.0-120 4.40 20 80.0-120 1.54 20 1,2-Dichlorobenzene 0.0250 0.0226 0.0229 90.3 91.7 72.0-123 0.0250 0.0247 0.0249 98.7 99.5 0.826 20 1,3-Dichlorobenzene

74.5

20 1,4-Dichlorobenzene 0.0250 0.0224 0.0227 89.5 90.8 77.0-120 1.39 0.0250 0.0179 0.0182 71.8 72.8 49.0-155 1.37 20 Dichlorodifluoromethane 1,1-Dichloroethane 0.0250 0.0186 0.0189 74.5 75.4 70.0-126 1.28 20 0.0250 0.0196 0.0199 78.6 79.7 67.0-126 1.40 20 1,2-Dichloroethane

1,1-Dichloroethene 0.0250 0.0208 0.0216 83.2 86.4 64.0-129 3.71 20 0.0250 0.0202 0.0206 8.08 82.5 73.0-120 2.10 20 cis-1,2-Dichloroethene 20 trans-1,2-Dichloroethene 0.0250 0.0206 0.0218 82.6 87.3 71.0-121 5.63 1,2-Dichloropropane 0.0250 0.0203 0.0216 81.3 86.5 75.0-125 6.20 20

20 1,1-Dichloropropene 0.0250 0.0219 0.0216 87.8 86.4 71.0-129 1.52 0.0250 0.0260 98.6 104 80.0-121 5.29 20 0.0247 1,3-Dichloropropane 20 cis-1,3-Dichloropropene 0.0250 0.0248 0.0251 99.1 100 79.0-123 1.17 20 0.0250 0.0258 0.0254 103 101 74.0-127 1.68 trans-1,3-Dichloropropene

2,2-Dichloropropane 0.0250 0.0207 0.0210 82.7 83.9 60.0-125 1.50 20 0.0250 0.0175 70.1 70.0 59.0-133 0.0502 20 Di-isopropyl ether 0.0175 0.0250 0.0264 0.0279 106 112 77.0-120 5.65 20 Ethylbenzene 82.1 64.0-131 3.68 20 Hexachloro-1,3-butadiene 0.0250 0.0205 0.0213 85.1

95.8

p-Isopropyltoluene 0.0250 0.0218 0.0229 87.2 91.4 74.0-126 4.75 20 0.125 0.0899 0.0886 71.9 37.0-158 1.53 20 2-Butanone (MEK) 70.9 0.0250 82.5 87.1 5.40 20 Methylene Chloride 0.0206 0.0218 66.0-121

ACCOUNT: PROJECT: SDG:
Terracon Consultants, Inc - Longmont, CO 22177047 L994060

92.9

DATE/TIME: 05/22/18 11:12

20

0.690

3.05

20

PAGE: 25 of 30

Cp

Tc

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L994060-01,02,03,04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3310793-1 05/16/18 13:05 • (LCSD) R3310793-2 05/16/18 13:25

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
4-Methyl-2-pentanone (MIBK)	0.125	0.104	0.105	83.4	83.6	59.0-143			0.229	20
Methyl tert-butyl ether	0.0250	0.0204	0.0206	81.7	82.3	64.0-123			0.743	20
Naphthalene	0.0250	0.0133	0.0152	53.2	61.0	62.0-128	<u>J4</u>	<u>J4</u>	13.6	20
n-Propylbenzene	0.0250	0.0234	0.0247	93.5	99.0	79.0-120			5.66	20
Styrene	0.0250	0.0237	0.0245	94.8	97.8	78.0-124			3.20	20
1,1,1,2-Tetrachloroethane	0.0250	0.0235	0.0255	93.9	102	75.0-122			8.43	20
1,1,2,2-Tetrachloroethane	0.0250	0.0231	0.0231	92.5	92.5	71.0-122			0.0270	20
Tetrachloroethene	0.0250	0.0271	0.0289	108	116	70.0-127			6.53	20
Toluene	0.0250	0.0241	0.0257	96.2	103	77.0-120			6.42	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0225	0.0227	90.0	90.9	61.0-136			0.988	20
1,2,3-Trichlorobenzene	0.0250	0.0151	0.0180	60.6	72.0	61.0-133	<u>J4</u>		17.3	20
1,2,4-Trichlorobenzene	0.0250	0.0193	0.0203	77.2	81.4	69.0-129			5.26	20
1,1,1-Trichloroethane	0.0250	0.0201	0.0213	80.4	85.3	68.0-122			5.93	20
1,1,2-Trichloroethane	0.0250	0.0255	0.0262	102	105	78.0-120			2.52	20
Trichloroethene	0.0250	0.0219	0.0229	87.6	91.6	78.0-120			4.47	20
Trichlorofluoromethane	0.0250	0.0237	0.0238	94.9	95.2	56.0-137			0.278	20
1,2,3-Trichloropropane	0.0250	0.0227	0.0222	90.8	88.8	72.0-124			2.27	20
1,2,3-Trimethylbenzene	0.0250	0.0222	0.0234	88.6	93.6	75.0-120			5.46	20
1,2,4-Trimethylbenzene	0.0250	0.0233	0.0238	93.0	95.3	75.0-120			2.36	20
1,3,5-Trimethylbenzene	0.0250	0.0244	0.0233	97.8	93.1	75.0-120			4.83	20
Vinyl chloride	0.0250	0.0229	0.0237	91.6	94.8	64.0-133			3.35	20
Xylenes, Total	0.0750	0.0778	0.0813	104	108	77.0-120			4.40	20
(S) Toluene-d8				105	107	80.0-120				
(S) Dibromofluoromethane				88.5	90.6	76.0-123				

80.0-120

(S) 4-Bromofluorobenzene

94.0

94.1

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

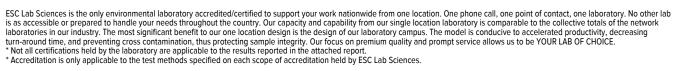
Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

Ss



PAGE:

27 of 30

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ompany Name/Address:	THE PARTY NAMED IN	-	Billing Infor	mation:	100		E A		A	nalysis /	Contair	er / Pres	ervative		Cha	in of Custod	y Page of										
Terracon - Longmont			50.5							2					1	M. I	CCC										
1242 Bramwood Pl. Longmont, CO 80501			S	ame						17	Pres	The state of					COLE-N-C-E-S										
teport to:	area	7	Email To:						es	w/HN03	No No	3			Mou	65 Lebanon Rd ant Juliet, TN 3 ne: 615-758-51	7122 200										
Michael Skridulis	A PIN	100	mjskridu	ulis@terraco					PR	W/F)PE	OB				ne: 800-767-59 615-758-5859											
roject Wertman #1				City/State Lon Collected:	gmont, CO			- P	E No	DPE	m H				L#	99	4060										
hone: 303-776-3921	Client Decinet #			Lab Project #			40ml Amber w/HCl	RSK-175 (2) 40ml Amber w/HC	250ml HDPE No PRes	50ml HE	250ml HDPE	k - 500ml HDPE				Но		16									
Orek Stephen	Site/Facility ID	t t		P.O. #			Ambe	ml Arr		177.4	S04, Br, Alk				1995	ctnum:TEI	RRALCO										
Collected by (signature):	- III - DAY CONTO	ab MUST Be	Notified) 200%	Stand	esults Needed Jacd No ✓ Yes	_	() 40ml	5 (2) 40	Carbon Dioxide	Ca,Mg,Na,Fe,K,Sr	(CI,S0				Pre	elogin: R:											
Immediately Packed on Ice N y X	Two Da		50%	100,000	NoYes	No. of	V8260 (2)	K-175	rbon [rbon	rbon [rbon [rbon	rbon [rbon [rbon	Irbon [Irbon [,Mg,n	Mg,N	N02,N03,CI,	- 3			PB Shi	ipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	88	RS	Cal	Ca	8			100	Res	m /Contamina	nt Sample # (lab only)										
MW-01	Gras	GW		5/15/18	1430	7	X	X	X	X	X	40				4	01										
MW-02	Gras	GW		5/15/18	1500	17	X	X	X	X	X						02										
MW-03	Gras	GW		5/15/18	1430	17	X	X	X	X	X				_		03										
MW-04	Gras	GW	14-	5/15/18	1600	12	X	X	X	X	X						84										
		GW		- Page III		-				19. 2					+												
	1							88																			
	ALLE																										
The Market		- 1				-																					
	CONTRACTOR NO.	I .				1		DIV		рН		Tem	0		1/6												
Matrix: SS - Soil GW - Groundw Remarks:	vater WW - Wastel	Water DW - I	orinking Wa	ter Oi - Other	430 W	130	191	33		Flow		_ Othe	r	Hold	u												
Relinquished by : (Signature)	0	Date: 5/15	115	Time:	Received by: (Sign	nature)	á			100		ned via:	er 🗆		fition:	(la	b use only)										
will mayer		Time:	Received by: (Sign	nature)	1	Temp: 7 °C Bott				ttles Receive	coc Seal Intact:NNA																
Relinquished by : (Signature)	1	Date:		Time: Received for lab by: (Sig			ature)			Date:	6/18	Tir	08 95	pH C	hecked;	N	CIF:										

	AB SCIENCES Receipt Form		
Client: TercALC	SDG#	9940	60
Cooler Received/Opened On: 5/16/18	Temperature:	1.7	2.5
Received By: Kathryn Cason			
Signature: Valha Coon			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		1/	
COC Signed / Accurate?		/	1
Bottles arrive intact?		1	
Correct bottles used?		1	101.751
Sufficient volume sent?		1	
If Applicable			THE PARTY
VOA Zero headspace?		1	200
		Marie Contract	

ANALYTICAL REPORT May 24, 2018

Terracon Consultants, Inc - Longmont, CO

Sample Delivery Group: L995388

Samples Received: 05/19/2018

Project Number: 22177047

Description: Wertman #1

Report To: Michael Skridulis

1242 Bramwood Place

Longmont, CO 80501

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SVP-01 L995388-01	5
SVP-02 L995388-02	7
SVP-03 L995388-03	9
Qc: Quality Control Summary	11
Volatile Organic Compounds (MS) by Method TO-15	11
Organic Compounds (GC) by Method D1946	15
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

			Collected by	Collected date/time	Received date/time
SVP-01 L995388-01 Air			Drew Stephens	05/15/18 10:20	05/19/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1114526	2	05/22/18 19:41	05/22/18 19:41	MBF
Organic Compounds (GC) by Method D1946	WG1114296	1	05/22/18 11:04	05/22/18 11:04	AMC
			Collected by	Collected date/time	Received date/time
SVP-02 L995388-02 Air			Drew Stephens	05/15/18 11:08	05/19/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1114526	2	05/22/18 20:24	05/22/18 20:24	MBF
Organic Compounds (GC) by Method D1946	WG1114296	1	05/22/18 11:10	05/22/18 11:10	AMC
			Collected by	Collected date/time	Received date/time
SVP-03 L995388-03 Air			Drew Stephens	05/15/18 12:00	05/19/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG1114526	2	05/22/18 21:08	05/22/18 21:08	MBF
Organic Compounds (GC) by Method D1946	WG1114296	1	05/22/18 11:15	05/22/18 11:15	AMC

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²Tc

Technical Service Representative

lapline R Richards

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 10:20

995388

Volatile Organic Compounds (MS) by Method TO-15

Analyta	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	2.50	5.94	3.52	8.37		2	WG1114526
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG1114526
Benzene	71-43-2	78.10	0.400	1.28	ND	ND		2	WG1114526
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG1114526
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG1114526
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG1114526
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG1114526
1,3-Butadiene	106-99-0	54.10	4.00	8.85	ND	ND		2	WG1114526
Carbon disulfide	75-15-0	76.10	0.400	1.24	1.44	4.49		2	WG1114526
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG1114526
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG1114526
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG1114526
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG1114526
Chloromethane	74-87-3	50.50	0.400	0.826	ND	ND		2	WG1114526
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG1114526
Cyclohexane	110-82-7	84.20	0.400	1.38	ND	ND		2	WG1114526
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG1114526
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG1114526
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG1114526
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG1114526
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG1114526
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG1114526
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG1114526
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG1114526
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG1114526
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG1114526
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG1114526
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG1114526
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG1114526
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG1114526
Ethanol	64-17-5	46.10	1.26	2.38	4.23	7.98		2	WG1114526
Ethylbenzene	100-41-4	106	0.400	1.73	ND	ND		2	WG1114526
4-Ethyltoluene	622-96-8	120	0.400	1.96	ND	ND		2	WG1114526
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG1114526
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.419	2.07		2	WG1114526
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG1114526
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG1114526
Heptane	142-82-5	100	0.400	1.64	ND	ND		2	WG1114526
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG1114526
n-Hexane	110-54-3	86.20	0.400	1.41	ND	ND		2	WG1114526
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG1114526
Methylene Chloride	75-09-2	84.90	0.400	1.39	0.618	2.15		2	WG1114526
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG1114526
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	ND ND	ND		2	WG1114526
		100.10	2.50	10.2	ND ND	ND ND			
4-Methyl-2-pentanone (MIBK) Methyl methacrylate	108-10-1 80-62-6	100.10	0.400	1.64	ND ND	ND ND		2	WG1114526
MTBE	1634-04-4	88.10	0.400	1.64	ND ND	ND ND		2	WG1114526
	91-20-3	128		6.60	ND ND	ND ND		2	WG1114526
Naphthalene			1.26					2	WG1114526
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND ND		2	WG1114526
Propene	115-07-1	42.10	0.800	1.38	ND	ND		2	WG1114526
Styrene	100-42-5	104	0.400	1.70	ND	ND		2	WG1114526
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG1114526
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG1114526
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG1114526
Toluene	108-88-3	92.10	0.400	1.51	0.626	2.36		2	WG1114526
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG1114526

Ss

Cn

СQс

Gl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 10:20

L995388

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG1114526
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG1114526
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG1114526
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	ND	ND		2	WG1114526
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	ND	ND		2	WG1114526
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	ND	ND		2	WG1114526
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG1114526
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG1114526
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND		2	WG1114526
m&p-Xylene	1330-20-7	106	0.800	3.47	1.18	5.11		2	WG1114526
o-Xylene	95-47-6	106	0.400	1.73	0.504	2.18		2	WG1114526
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.1				WG1114526

GI

Organic Compounds (GC) by Method D1946

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Oxygen	7782-44-7	32	2.00	16.9		1	WG1114296
Carbon Monoxide	630-08-0	28	2.00	ND		1	WG1114296
Carbon Dioxide	124-38-9	44.01	0.500	ND		1	WG1114296
Methane	74-82-8	16	0.400	ND		1	WG1114296

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 11:08

995388

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	2.50	5.94	5.94	14.1		2	WG1114526
Allyl chloride	107-05-1	76.53	0.400	1.25	ND	ND		2	WG1114526
Benzene	71-43-2	78.10	0.400	1.28	ND	ND		2	WG1114526
Benzyl Chloride	100-44-7	127	0.400	2.08	ND	ND		2	WG1114526
Bromodichloromethane	75-27-4	164	0.400	2.68	ND	ND		2	WG1114526
Bromoform	75-25-2	253	1.20	12.4	ND	ND		2	WG1114526
Bromomethane	74-83-9	94.90	0.400	1.55	ND	ND		2	WG1114526
1,3-Butadiene	106-99-0	54.10	4.00	8.85	ND	ND		2	WG1114526
Carbon disulfide	75-15-0	76.10	0.400	1.24	ND	ND		2	WG1114526
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG1114526
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG1114526
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG1114526
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG1114526
Chloromethane	74-87-3	50.50	0.400	0.826	0.625	1.29		2	WG1114526
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG1114526
Cyclohexane	110-82-7	84.20	0.400	1.38	ND	ND		2	WG1114526
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG1114526
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG1114526
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG1114526
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG1114526
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG1114526
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG1114526
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG1114526
1,1-Dichloroethene	75-34-3 75-35-4	96.90	0.400	1.59	ND	ND		2	WG1114526
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG1114526
	156-60-5	96.90	0.400	1.59	ND	ND		2	
trans-1,2-Dichloroethene	78-87-5	113	0.400	1.85	ND	ND			WG1114526
1,2-Dichloropropane								2	WG1114526
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG1114526
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG1114526
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND F 00	ND 0.60		2	WG1114526
Ethanol	64-17-5	46.10	1.26	2.38	5.09	9.60		2	WG1114526
Ethylbenzene	100-41-4	106	0.400	1.73	ND	ND		2	WG1114526
4-Ethyltoluene	622-96-8	120	0.400	1.96	ND	ND		2	WG1114526
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG1114526
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	0.430	2.13		2	WG1114526
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG1114526
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG1114526
Heptane	142-82-5	100	0.400	1.64	ND	ND		2	WG1114526
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG1114526
n-Hexane	110-54-3	86.20	0.400	1.41	0.785	2.77		2	WG1114526
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG1114526
Methylene Chloride	75-09-2	84.90	0.400	1.39	1.57	5.46		2	WG1114526
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG1114526
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	ND	ND		2	WG1114526
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	ND	ND		2	WG1114526
Methyl methacrylate	80-62-6	100.12	0.400	1.64	ND	ND		2	WG1114526
MTBE	1634-04-4	88.10	0.400	1.44	ND	ND		2	WG1114526
Naphthalene	91-20-3	128	1.26	6.60	ND	ND		2	WG1114526
2-Propanol	67-63-0	60.10	2.50	6.15	ND	ND		2	WG1114526
Propene	115-07-1	42.10	0.800	1.38	ND	ND		2	WG1114526
Styrene	100-42-5	104	0.400	1.70	ND	ND		2	WG1114526
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG1114526
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG1114526
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	ND	ND		2	WG1114526
retiallyulolulali									
Toluene	108-88-3	92.10	0.400	1.51	0.430	1.62		2	WG1114526

Analyte

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

2,2,4-Trimethylpentane

(S) 1,4-Bromofluorobenzene

Trichloroethylene

Vinyl chloride

Vinyl Bromide

Vinyl acetate

m&p-Xylene

o-Xylene

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 11:08

ND

ND

ND

ND

ND

ND

96.5

ND

ND

ND

ND

ND

ND

Volatile Organic Compounds (MS) by Method TO-15

CAS#

71-55-6

79-00-5

79-01-6

95-63-6

108-67-8

540-84-1

75-01-4

593-60-2

108-05-4

1330-20-7

95-47-6

460-00-4

Mol. Wt.

133

133

131

120

120

114.22

62.50

106.95

86.10

106

106

175

RDL1

ppbv

0.400

0.400

0.400

0.400

0.400

0.400

0.400

0.400

0.400

0.800

0.400

60.0-140

RDL2

ug/m3

2.18

2.18

2.14

1.96

1.96

1.87

1.02

1.75

1.41

3.47

1.73

L995388					
					F
Result	Result	Qualifier	Dilution	Batch	
ppbv	ug/m3				Ŀ
ND	ND		2	WG1114526	ŀ
ND	ND		2	WG1114526	L
ND	ND		2	WG1114526	Γ
ND	ND		2	WG1114526	ı
ND	ND		2	WG1114526	L

2

2

2

2

2

2

WG1114526

WG1114526

WG1114526

WG1114526

WG1114526

WG1114526

WG1114526

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Oxygen	7782-44-7	32	2.00	17.3		1	WG1114296
Carbon Monoxide	630-08-0	28	2.00	ND		1	WG1114296
Carbon Dioxide	124-38-9	44.01	0.500	ND		1	WG1114296
Methane	74-82-8	16	0.400	ND		1	WG1114296

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 12:00

.995388

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch
Acetone	67-64-1	58.10	2.50	5.94	4.44	10.6		2	WG1114526
Allyl chloride	107-05-1	76.53	0.400	1.25	4.44 ND	ND		2	WG1114526 WG1114526
,	71-43-2	78.10	0.400	1.25	1.03	3.30		2	WG1114526 WG1114526
Benzene Benzul Chlorida	100-44-7	127	0.400	2.08	ND	3.30 ND		2	
Benzyl Chloride	75-27-4	164	0.400	2.08	ND ND	ND ND		2	WG1114526 WG1114526
Bromodichloromethane Promoform									
Bromoform	75-25-2	253	1.20	12.4	ND	ND 0.F4		2	WG1114526
Bromomethane	74-83-9	94.90	0.400	1.55	2.46	9.54		2	WG1114526
1,3-Butadiene	106-99-0	54.10	4.00	8.85	ND	ND		2	WG1114526
Carbon disulfide	75-15-0	76.10	0.400	1.24	45.1	140 ND		2	WG1114526
Carbon tetrachloride	56-23-5	154	0.400	2.52	ND	ND		2	WG1114526
Chlorobenzene	108-90-7	113	0.400	1.85	ND	ND		2	WG1114526
Chloroethane	75-00-3	64.50	0.400	1.06	ND	ND		2	WG1114526
Chloroform	67-66-3	119	0.400	1.95	ND	ND		2	WG1114526
Chloromethane	74-87-3	50.50	0.400	0.826	2.29	4.73		2	WG1114526
2-Chlorotoluene	95-49-8	126	0.400	2.06	ND	ND		2	WG1114526
Cyclohexane	110-82-7	84.20	0.400	1.38	4.72	16.3		2	WG1114526
Dibromochloromethane	124-48-1	208	0.400	3.40	ND	ND		2	WG1114526
1,2-Dibromoethane	106-93-4	188	0.400	3.08	ND	ND		2	WG1114526
1,2-Dichlorobenzene	95-50-1	147	0.400	2.40	ND	ND		2	WG1114526
1,3-Dichlorobenzene	541-73-1	147	0.400	2.40	ND	ND		2	WG1114526
1,4-Dichlorobenzene	106-46-7	147	0.400	2.40	ND	ND		2	WG1114526
1,2-Dichloroethane	107-06-2	99	0.400	1.62	ND	ND		2	WG1114526
1,1-Dichloroethane	75-34-3	98	0.400	1.60	ND	ND		2	WG1114526
1,1-Dichloroethene	75-35-4	96.90	0.400	1.59	ND	ND		2	WG1114526
cis-1,2-Dichloroethene	156-59-2	96.90	0.400	1.59	ND	ND		2	WG1114526
trans-1,2-Dichloroethene	156-60-5	96.90	0.400	1.59	ND	ND		2	WG1114526
1,2-Dichloropropane	78-87-5	113	0.400	1.85	ND	ND		2	WG1114526
cis-1,3-Dichloropropene	10061-01-5	111	0.400	1.82	ND	ND		2	WG1114526
trans-1,3-Dichloropropene	10061-02-6	111	0.400	1.82	ND	ND		2	WG1114526
1,4-Dioxane	123-91-1	88.10	0.400	1.44	ND	ND		2	WG1114526
Ethanol	64-17-5	46.10	1.26	2.38	5.14	9.69		2	WG1114526
Ethylbenzene	100-41-4	106	0.400	1.73	0.999	4.33		2	WG1114526
4-Ethyltoluene	622-96-8	120	0.400	1.96	ND	ND		2	WG1114526
Trichlorofluoromethane	75-69-4	137.40	0.400	2.25	ND	ND		2	WG1114526
Dichlorodifluoromethane	75-71-8	120.92	0.400	1.98	ND	ND		2	WG1114526
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.400	3.07	ND	ND		2	WG1114526
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.400	2.80	ND	ND		2	WG1114526
Heptane	142-82-5	100	0.400	1.64	1.46	5.99		2	WG1114526
Hexachloro-1,3-butadiene	87-68-3	261	1.26	13.5	ND	ND		2	WG1114526
n-Hexane	110-54-3	86.20	0.400	1.41	2.25	7.95		2	WG1114526
Isopropylbenzene	98-82-8	120.20	0.400	1.97	ND	ND		2	WG1114526
Methylene Chloride	75-09-2	84.90	0.400	1.39	1.18	4.10		2	WG1114526
Methyl Butyl Ketone	591-78-6	100	2.50	10.2	ND	ND		2	WG1114526
2-Butanone (MEK)	78-93-3	72.10	2.50	7.37	ND	ND		2	WG1114526
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2.50	10.2	ND	ND		2	WG1114526
Methyl methacrylate	80-62-6	100.10	0.400	1.64	ND ND	ND ND		2	WG1114526
MTBE	1634-04-4	88.10	0.400	1.04	ND	ND		2	WG1114526
Naphthalene	91-20-3	128	1.26	6.60	ND ND	ND ND		2	WG1114526
2-Propanol	67-63-0	60.10	2.50	6.60	ND ND	ND ND		2	WG1114526
Propene	115-07-1	42.10	0.800	1.38	31.8	54.8		2	WG1114526
Styrene	100-42-5	104	0.400	1.70	ND	ND		2	WG1114526
1,1,2,2-Tetrachloroethane	79-34-5	168	0.400	2.75	ND	ND		2	WG1114526
Tetrachloroethylene	127-18-4	166	0.400	2.72	ND	ND		2	WG1114526
Tetrahydrofuran	109-99-9	72.10	0.400	1.18	0.611	1.80		2	WG1114526
Toluene	108-88-3	92.10	0.400	1.51	2.49	9.40		2	WG1114526
1,2,4-Trichlorobenzene	120-82-1	181	1.26	9.33	ND	ND		2	WG1114526

ONE LAB. NATIONWIDE.

Collected date/time: 05/15/18 12:00

Volatile Organic Compounds (MS) by Method TO-15

voiatile Organic Co	mpounds	(IVIS) Dy	Method	10-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.400	2.18	ND	ND		2	WG1114526
1,1,2-Trichloroethane	79-00-5	133	0.400	2.18	ND	ND		2	WG1114526
Trichloroethylene	79-01-6	131	0.400	2.14	ND	ND		2	WG1114526
1,2,4-Trimethylbenzene	95-63-6	120	0.400	1.96	0.588	2.88		2	WG1114526
1,3,5-Trimethylbenzene	108-67-8	120	0.400	1.96	ND	ND		2	WG1114526
2,2,4-Trimethylpentane	540-84-1	114.22	0.400	1.87	0.662	3.09		2	WG1114526
Vinyl chloride	75-01-4	62.50	0.400	1.02	ND	ND		2	WG1114526
Vinyl Bromide	593-60-2	106.95	0.400	1.75	ND	ND		2	WG1114526
Vinyl acetate	108-05-4	86.10	0.400	1.41	ND	ND		2	WG1114526
m&p-Xylene	1330-20-7	106	0.800	3.47	1.28	5.55		2	WG1114526
o-Xylene	95-47-6	106	0.400	1.73	1.02	4.44		2	WG1114526
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.1				WG1114526

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Oxygen	7782-44-7	32	2.00	17.1		1	WG1114296
Carbon Monoxide	630-08-0	28	2.00	ND		1	WG1114296
Carbon Dioxide	124-38-9	44.01	0.500	ND		1	WG1114296
Methane	74-82-8	16	0.400	ND		1	WG1114296

GI

PAGE:

10 of 19

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L995388-01,02,03

Method Blank (MB)

- Wethod Blank (IVID)				
(MB) R3312407-3 05/22/1				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.0569	1.25
Allyl Chloride	U		0.0546	0.200
Benzene	U		0.0460	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0436	0.200
Bromoform	U		0.0786	0.600
Bromomethane	U		0.0609	0.200
1,3-Butadiene	U		0.0563	2.00
Carbon disulfide	U		0.0544	0.200
Carbon tetrachloride	U		0.0585	0.200
Chlorobenzene	U		0.0601	0.200
Chloroethane	U		0.0489	0.200
Chloroform	U		0.0574	0.200
Chloromethane	U		0.0544	0.200
2-Chlorotoluene	U		0.0605	0.200
Cyclohexane	U		0.0534	0.200
Dibromochloromethane	U		0.0494	0.200
1,2-Dibromoethane	U		0.0185	0.200
1,2-Dichlorobenzene	U		0.0603	0.200
1,3-Dichlorobenzene	U		0.0597	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0616	0.200
1,1-Dichloroethane	U		0.0514	0.200
1,1-Dichloroethene	U		0.0490	0.200
cis-1,2-Dichloroethene	U		0.0389	0.200
trans-1,2-Dichloroethene	U		0.0464	0.200
1,2-Dichloropropane	U		0.0599	0.200
cis-1,3-Dichloropropene	U		0.0588	0.200
trans-1,3-Dichloropropene	U		0.0435	0.200
1,4-Dioxane	U		0.0554	0.200
Ethylbenzene	U		0.0506	0.200
4-Ethyltoluene	U		0.0666	0.200
Trichlorofluoromethane	U		0.0673	0.200
Dichlorodifluoromethane	U		0.0601	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0687	0.200
1,2-Dichlorotetrafluoroethane	U		0.0458	0.200
Heptane	U		0.0626	0.200
Hexachloro-1,3-butadiene	U		0.0656	0.630
n-Hexane	U		0.0457	0.200
Isopropylbenzene	U		0.0563	0.200

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L995388-01,02,03

Method Blank (MB)

(MB) R3312407-3 05/22/1	8 12:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	Ē
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0465	0.200	L
Methyl Butyl Ketone	U		0.0682	1.25	П
2-Butanone (MEK)	U		0.0493	1.25	L
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	Γ
Methyl Methacrylate	U		0.0773	0.200	
MTBE	U		0.0505	0.200	L
Naphthalene	U		0.154	0.630	
2-Propanol	U		0.0882	1.25	L
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	
Tetrachloroethylene	U		0.0497	0.200	
Tetrahydrofuran	U		0.0508	0.200	L
Toluene	U		0.0499	0.200	Ī
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	
1,1,2-Trichloroethane	U		0.0287	0.200	
Trichloroethylene	U		0.0545	0.200	L
1,2,4-Trimethylbenzene	U		0.0483	0.200	
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	
Vinyl chloride	U		0.0457	0.200	
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3312407-1 05/22/1	8 11:10 • (LCSD)	R3312407-2	05/22/18 11:53								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	4.12	3.92	110	105	52.0-158			4.93	25	
Propene	3.75	4.00	3.83	107	102	54.0-155			4.15	25	
Dichlorodifluoromethane	3.75	3.99	3.89	106	104	69.0-143			2.50	25	
1,2-Dichlorotetrafluoroethane	3.75	3.90	3.83	104	102	70.0-130			1.70	25	
Chloromethane	3.75	3.91	3.75	104	100	70.0-130			4.05	25	

(S) 1,4-Bromofluorobenzene 97.6

60.0-140

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

3.75

3.75

Chlorobenzene

Ethylbenzene

3.89

3.97

3.92

3.83

104

106

105

102

L995388-01,02,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3312407-1 05/22/18 11:10 • (LCSD) R3312407-2 05/22/18 11:53 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte % % % % % ppbv ppbv ppbv Vinyl chloride 3.75 3.79 3.67 101 98.0 70.0-130 3.24 25 98.5 70.0-130 25 1,3-Butadiene 3.75 3.69 3.65 97.4 1.15 Bromomethane 3.75 3.57 3.61 95.2 96.1 70.0-130 1.03 25 25 Chloroethane 3.75 3.53 3.75 94.0 100 70.0-130 6.22 3.75 3.65 3.88 97.4 103 70.0-130 6.01 25 Trichlorofluoromethane 25 1,1,2-Trichlorotrifluoroethane 3.75 3.86 3.74 103 99.6 70.0-130 3.38 3.75 3.90 3.70 104 98.8 70.0-130 5.22 25 1,1-Dichloroethene 1,1-Dichloroethane 3.75 3.88 3.71 103 99.0 70.0-130 4.37 25 3.75 4.03 3.74 107 99.7 70.0-130 7.42 25 Acetone 25 2-Propanol 3.75 3.90 3.74 104 99.7 66.0-150 4.19 3.75 3.95 3.73 105 99.5 70.0-130 5.64 25 Carbon disulfide 25 Methylene Chloride 3.75 3.84 3.67 102 97.9 70.0-130 4.51 MTBE 3.75 3.83 3.65 102 97.4 70.0-130 4.79 25 25 trans-1,2-Dichloroethene 3.75 3.97 3.78 106 101 70.0-130 4.84 25 3.75 3.87 3.72 103 99.1 70.0-130 3.88 n-Hexane Vinyl acetate 3.75 3.99 3.77 106 101 70.0-130 5.53 25 25 3.75 3.95 3.76 105 100 70.0-130 4.86 Methyl Ethyl Ketone cis-1,2-Dichloroethene 3.75 3.89 3.75 104 100 70.0-130 3.74 25 3.75 3.74 104 99.7 70.0-130 3.93 25 Chloroform 3.89 3.75 3.94 3.73 105 99.4 70.0-130 5.38 25 Cyclohexane 25 3.75 3.88 103 98.9 70.0-130 4.39 1,1,1-Trichloroethane 3.71 3.75 3.87 103 99.6 70.0-130 3.59 25 Carbon tetrachloride 3.74 Benzene 3.75 3.92 3.78 104 101 70.0-130 3.48 25 3.75 3.88 104 102 70.0-130 25 1,2-Dichloroethane 3.83 1.44 3.75 108 104 70.0-130 3.90 25 Heptane 4.05 3.89 3.87 103 70.0-130 0.763 25 Trichloroethylene 3.75 3.84 103 25 1,2-Dichloropropane 3.75 3.94 3.84 105 102 70.0-130 2.71 1,4-Dioxane 3.75 3.95 3.89 105 104 70.0-152 1.48 25 104 102 25 Bromodichloromethane 3.75 3.89 3.81 70.0-130 1.97 3.75 102 25 cis-1,3-Dichloropropene 3.90 3.84 104 70.0-130 1.66 104 70.0-142 25 4-Methyl-2-pentanone (MIBK) 3.75 3.96 3.90 106 1.69 Toluene 3.75 3.88 103 103 70.0-130 25 3.85 0.831 trans-1,3-Dichloropropene 3.75 3.84 3.81 102 101 70.0-130 0.784 25 102 102 70.0-130 0.714 25 1,1,2-Trichloroethane 3.75 3.81 3.83 Tetrachloroethylene 3.75 3.89 3.96 104 106 70.0-130 1.94 25 25 70.0-150 Methyl Butyl Ketone 3.75 4.01 4.03 107 107 0.515 3.75 3.91 3.92 104 104 70.0-130 0.217 25 Dibromochloromethane 25 1,2-Dibromoethane 3.75 3.87 3.88 103 103 70.0-130 0.0716

'Sr

PAGE:

0.892

3.68

25

25

70.0-130

70.0-130

Tetrahydrofuran

Vinyl Bromide

Isopropylbenzene

2,2,4-Trimethylpentane

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L995388-01,02,03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3312407-1 05/22/18 11:10 • (LCSD) R3312407-2 05/22/18 11:53

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
m&p-Xylene	7.50	8.05	7.83	107	104	70.0-130			2.74	25	
o-Xylene	3.75	3.97	3.89	106	104	70.0-130			2.15	25	
Styrene	3.75	4.08	3.99	109	106	70.0-130			2.31	25	
Bromoform	3.75	4.04	3.97	108	106	70.0-130			1.82	25	
1,1,2,2-Tetrachloroethane	3.75	3.92	3.86	105	103	70.0-130			1.58	25	
4-Ethyltoluene	3.75	3.92	3.90	105	104	70.0-130			0.446	25	
1,3,5-Trimethylbenzene	3.75	3.99	3.98	107	106	70.0-130			0.261	25	
1,2,4-Trimethylbenzene	3.75	3.91	3.92	104	105	70.0-130			0.190	25	
1,3-Dichlorobenzene	3.75	4.03	3.97	107	106	70.0-130			1.35	25	
1,4-Dichlorobenzene	3.75	4.19	4.16	112	111	70.0-130			0.767	25	
Benzyl Chloride	3.75	4.00	3.92	107	104	70.0-144			2.15	25	
1,2-Dichlorobenzene	3.75	4.00	3.94	107	105	70.0-130			1.51	25	
1,2,4-Trichlorobenzene	3.75	4.51	4.57	120	122	70.0-155			1.32	25	
Hexachloro-1,3-butadiene	3.75	4.33	4.37	115	116	70.0-145			0.884	25	
Naphthalene	3.75	4.38	4.41	117	117	70.0-155			0.481	25	
Allyl Chloride	3.75	3.95	3.71	105	98.9	70.0-130			6.27	25	
2-Chlorotoluene	3.75	4.07	4.04	108	108	70.0-130			0.730	25	
Methyl Methacrylate	3.75	3.87	3.86	103	103	70.0-130			0.275	25	

70.0-140

70.0-130

70.0-130

70.0-130

60.0-140

3.75

3.75

3.75

3.75

3.94

3.90

3.61

3.97

3.78

3.71

3.91

3.89

105

104

96.3

106

99.4

101

98.9

104

104

99.9

4.06

5.10

8.01

2.00

25 25

25

25

ONE LAB. NATIONWIDE.

Organic Compounds (GC) by Method D1946

L995388-01,02,03

Method Blank (MB)

(MB) R3311870-3 05/2	2/18 09:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Oxygen	0.882	<u>J</u>	0.225	2.00
Carbon Monoxide	U		0.665	2.00
Carbon Dioxide	U		0.121	0.500
Methane	U		0.0584	0.400

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 110011070 1 007227	.0 00.20 (2002	,	00/22/10 00:2	. •						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	%	%	%	%	%	%			%	%
Oxygen	2.50	2.71	2.78	108	111	70.0-130			2.43	20
Carbon Monoxide	2.50	2.64	2.54	106	102	70.0-130			3.69	20
Carbon Dioxide	2.50	2.76	2.69	111	108	70.0-130			2.78	20
Methane	2.00	2.15	2.10	107	105	70.0-130			2.32	20

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

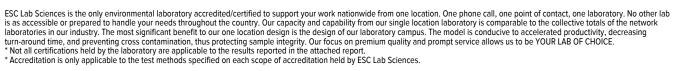
Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Ss



ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/		- awar		Billing Informat	ion:		44.		An	alysis	Chain of Custor	ty Page 2 of
Terracon - Longmont 1242 Bramwood Pl. Longmont, CO 80501				SAME					Thue	J	L'A-B S	ESC
Report to: Michael Skrid	dulis			Email To:	Otomoon				and i	-	12065 Lebanon Rd Mount Juliet, TN 3	
Project Description: Westman #1											Phone: 615-758-54 Phone: 800-767-54 Fax: 615-758-5859	58 17
Phone: 303-776-3921 Client Project # 22177047			17	Lab Project #					Method,		L#	[995388 1144
Collected by (print	Phens	Site/Facility ID #	1.25	P.O. #					/M-		Acctnum: TEI	
Rush? (Lab MUST Be Notified)		200% 100% 50%	Email?NoYes Canister Pressure/			2 D Pressure/Vacuum	2	of 92555		Template: Prelogin: TSR: Cooler:		
Sample ID	Sam	ple Description	Can #	Date	Time	Initial	Final	TO-15	6,76		Shipped Via:	
SVP-01	Soi	Vapor	5752	5/15/18	1020	24	7	X	×		Rem./Contaminant	Sample # (lab only
SVP-02 SVP-03		V	7373	1	1200	24	7	X	×			-00
					720	~0		×				, 9
773												
temarks:		1361 6930								Hold#		
Relinquished by : (Signature) Date: Time: 5/18/8 / 16 cc Relinquished by : (Signature) Date: Time:)	Paris de la Co			A LEGISLAND AND LOCAL PROPERTY OF THE PARTY		Condition: (lab use only)				
Relinquished by : (5	ignature)	Date:	Time:	Received for	lab by: (Signature)	Date: 19/18	3 Time: 0842	/	COC Sea		N NA

ESC LAB	SCIENCES	S NO.	
	ceipt Form		
Client: TERRALCO	SDG#	19953	388
Cooler Received/Opened On: 5/ /1/18	Temperature:		All and
Received By: Ian White			
Signature: The	CONT. IN SHIP CO.		
Receipt Check List	NP Y	es I	No
COC Seal Present / Intact?			
COC Signed / Accurate?		Maria Area	Nation of the least
Bottles arrive intact?	The second second second second		
Correct bottles used?			
Sufficient volume sent?	The same of the sa		
If Applicable			
VOA Zero headspace?		10.0	100
Preservation Correct / Checked?			